-
General and Specific Combing Ability of Maize (Zea mays L.) Inbred Line for Grain Yield and Yield Related Traits Using 8×8 Diallel Crosses
Woldu Mogesse,
Habtamu Zelleke,
Mandefro Nigussie
Issue:
Volume 8, Issue 3, May 2020
Pages:
45-56
Received:
13 January 2020
Accepted:
25 February 2020
Published:
28 May 2020
Abstract: Combining ability is the genotype's ability to pass the desired character to the offspring. Hence, combining ability information is needed to determine the crossed pairs in the formation of hybrid varieties. Therefore, this study was conducted to estimate general and specific combining ability effects of maize inbred lines for yield and yield-related traits. Eight maize inbred lines were mated through a half diallel mating design (Griffing’s Method IV, Model I). The resulting twenty-eight F1 hybrids for twenty one characters were evaluated using Alpha-Lattice Design with three replications during 2018 main cropping season at Haramaya University Research Site (Raare). Genetic analysis of variance due to mean squares revealed significant differences for general combining ability (gca) and specific combining ability (sca) effects indicated the presence of additive as well as non additive gene effects in governing the inheritance of these traits. These results confirm the possible involvement of both additive and non-additive gene actions in the inheritance of these characters and can be improved either by recurrent selection or even by heterosis breeding methods like production of hybrids, synthetics and composites. However, relative magnitude of these variances indicated that additive gene effects were more prominent for most of the characters studied since the ratio of GCA:SCA were more than unity in most of the traits. Parental line L3 and L8 were good general combiner for grain yield and L1, L2, L6 and L7 are desirable for earliness. The better performing four crosses L3×L6, L3×L8, L2×L5, and L6× L8 were good specific combiners for grain yield, which could be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigor.
Abstract: Combining ability is the genotype's ability to pass the desired character to the offspring. Hence, combining ability information is needed to determine the crossed pairs in the formation of hybrid varieties. Therefore, this study was conducted to estimate general and specific combining ability effects of maize inbred lines for yield and yield-relat...
Show More
-
Exploitation of PGPR Endophytic Burkholderia Isolates to Enhance Organic Agriculture
Sandanakirouchenane Aroumougame,
Thirumangai Mannan Geetha,
Muthu Thangaraju
Issue:
Volume 8, Issue 3, May 2020
Pages:
57-64
Received:
18 September 2019
Accepted:
4 October 2019
Published:
28 May 2020
Abstract: Although many bacterial species have been isolated from the rhizosphere of various crop plants, the recent discovery is Burkholderia sp., an endophytic bacterium. In this study, the Burkholderia isolates viz., RB1 (Rice Burkholderia 1), MB2 (Maize Burkholderia 2), SB3 (Sugarcane Burkholderia 3) and BB4 (Black gram Burkholderia 4) were enumerated from the root, stem and leaf samples of four different crops viz., rice, maize, sugarcane and black gram using N-free BAz (Burkholderia Azelaic acid) medium, in which black gram roots were observed higher population. Further, growth promoting activities of the Burkholderia isolates were examined, the maximum production of IAA and GA was noticed on the BB4 as compared to other isolates and the cytokinin production was recorded more in isolates SB3 followed by BB4. Among the four isolates, maximum amount of salicylate type was noticed in RB1 and catechol type was recorded higher in BB4 which showed that these isolates were capable to produce Siderophore. The ACC deaminase activity of the isolates were exhibited, the BB4 was recorded more followed by SB3. Therefore, the endophytic Burkholderia isolates also the important contributor to the crop growth through secretion of growth promoting substances, production of siderophore and ACC deaminase activities may improve the Agriculture production.
Abstract: Although many bacterial species have been isolated from the rhizosphere of various crop plants, the recent discovery is Burkholderia sp., an endophytic bacterium. In this study, the Burkholderia isolates viz., RB1 (Rice Burkholderia 1), MB2 (Maize Burkholderia 2), SB3 (Sugarcane Burkholderia 3) and BB4 (Black gram Burkholderia 4) were enumerated fr...
Show More
-
Formulation of Eco-friendly Management Package Against Seedling Disease Caused by Sclerotium rolfsii of Lentil
Md. Iqbal Faruk,
Md. Monirul Islam,
Firoza Khatun
Issue:
Volume 8, Issue 3, May 2020
Pages:
65-72
Received:
3 March 2020
Accepted:
19 March 2020
Published:
8 June 2020
Abstract: The experiments were conducted in the fields of Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur during 2014-15, 2015-16 and 2016-17 cropping years to observe the effect of formulated Trichoderma harzianum (Soil amendment with Tricho-compost and seed treatment with T. harzianum spore suspension) and organic soil amendment poultry refuse either singly or in combination with seed treatment with fungicide Provax 200 WP against soil-borne pathogens, Sclerotium rolfsii of lentil causing seedling disease. The partially decomposed poultry refuse was incorporated in the 2 weeks before seed sowing of lentil where Tricho-composts were incorporated in the soil 7 days before seed sowing. Seeds were treated with Trichoderma spore suspension and Provax 200 WP at the time of seed sowing. From this study it was revealed that soil amendment with Tricho-compost or integration poultry refuse with seed treatment by Provax 200 WP performed as the best treatments in reducing seedling mortality and increasing plant growth and yield of lentil which was significantly differed from the other treatments including control. Seed treatment with chemical fungicide provax showed better performance against the disease also seed treatments with Trichoderma spores suspension and soil amendment with poultry refuse which effect at per. Both of them reduced seedling mortality and increased plant growth and yield of lentil.
Abstract: The experiments were conducted in the fields of Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur during 2014-15, 2015-16 and 2016-17 cropping years to observe the effect of formulated Trichoderma harzianum (Soil amendment with Tricho-compost and seed treatment with T. harzianum spore suspension) and organic soil amendme...
Show More
-
Methodological Approaches in Population Botany and Plant Ecology
Svetlana Vladislavovna Fedorova
Issue:
Volume 8, Issue 3, May 2020
Pages:
73-90
Received:
16 May 2020
Accepted:
28 May 2020
Published:
20 June 2020
Abstract: In the article presents a new Concept “Polycentric Model of Plant” in addition to the generally accepted in botany Concept “Morphologic Model of Plant”. The basis of the development is laid by my many years of experience in conducting a population study of plants from different categories of the life form in different regions. Concept “Polycentric Model of Plant” allows a new structure of the body of the plant. Elements of the model are not organs, but functional centers: Shoot-formation center, Mineral-nutrition center, Organic-nutrition center, Generation center. Metric characteristics of each of these centers are indicators by which the researcher can simulate the direction of development of the plant population system in each of surveyed habitats. Presented new methodological approaches to solving pressing environmental problems within Population Botany and Plant Ecology, developed on the basis of Concept “Polycentric Model of Plant”. These are: 1) Universal Scale of Vegetation Elements and Diagnostic Key for determining Vegetation Elements by a set of metric indicators of the most developed hypothetical individual of species in the composition of the plant community was developed; 2) Formula for calculate Coefficient Digression of Steppe Vegetation; 3) Scale of Digression Steppe Vegetation and Diagnostic Key to determining 5 stages on this scale; 4) Hypothetical Lifecycle of Plant from the category of life forms “Shrub” and Diagnostic Key to determining 7 stages in this cycle; 5) Diagnostic Key for structuring Plant Population System from the category of life forms “Stoloniferous” by Morph-function groups. Presented also: 1) Elements in “Polycentric Model of Plant”, the functional role and the likely participation of one or another element in the formation of the product of vegetative and generative reproductions; 2) Hypothetical Lifecycle of Plant from categories of life forms “Terrestrial-stoloniferous” and “Soboliferous shrub” by example Potentilla anserina L. and Amygdalus nana L. (Rosaceae); 3) the complete set of Morph-functional groups of individuals as part of a plant population system, the functional role of each group and the likelihood of an individual falling into each group in Hypothetical Lifecycle of Plant from the category of life forms “Stoloniferous”; 4) results of a 3-year experiment with P. anserina, which reflecting population response to the climatic factor and the different of individual disposition presented in Concept “Polycentric Model of Plant”; 5) basic principles of plants population research and points of research on which it is expedient to involve gifted children.
Abstract: In the article presents a new Concept “Polycentric Model of Plant” in addition to the generally accepted in botany Concept “Morphologic Model of Plant”. The basis of the development is laid by my many years of experience in conducting a population study of plants from different categories of the life form in different regions. Concept “Polycentric ...
Show More