Abstract: To analyze a physical plasma system, qualitative analysis methods should be applied first. Plasma systems components like the plasma source itself and its diagnostic tools must be studied to find out how these components interact to yield results describing the actual plasma system behaviour. For example, immersing a basic electric diagnostic instrument, such as the Langmuir probe, in a thermionically produced plasma source to measure plasma characteristic parameters constitutes a plasma system. When a time-sweep of the probe bias voltage is applied to the probe tip, plasma charge current is collected between the two probe bias voltage polarities. The resulting so-called I-V characteristics curve resembles the logistic curve proposed, previously, by Verhulst. The Verhulst logistic model curve described how population grow relative to available resources and formed the basis of modern chaos theory. In this letter, accounting for plasma charges population growth (or decay) as well as how they are sustained in a plasma system is discussed qualitatively. This is done without bearing additional assumptions as to the physical composition of the plasma charge itself. In addition, the findings here should modify the approach in interpreting Langmuir probe trace data that used before, only, an exponential fit to model the plasma charge current vs. probe bias voltage data. This allows for more fitting models to be implemented to analyze the behaviour of a variety of plasma systems.Abstract: To analyze a physical plasma system, qualitative analysis methods should be applied first. Plasma systems components like the plasma source itself and its diagnostic tools must be studied to find out how these components interact to yield results describing the actual plasma system behaviour. For example, immersing a basic electric diagnostic instr...Show More