Predictive Direct Power Control of Doubly Fed Induction Generators to Reduce the Power Ripple During the Grid Synchronization
Ghazaleh Sarfi,
Mohsen Kalantar
Issue:
Volume 9, Issue 6, November 2020
Pages:
97-103
Received:
24 November 2020
Accepted:
7 December 2020
Published:
16 December 2020
Abstract: This paper presents a new method of predicting power based on predictive direct power control. This method reduces power ripple in a doubly fed induction generator, which makes it possible to have a smoother synchronization with the grid in low constant frequency switching. To achieve fast and smooth grid synchronization without any over current, the difference between the measure, frequency, and the phase of the stator voltage and the grid voltage should be minimized. This condition can be achieved by minimizing the error between active and reactive virtual power and their references. By predicting the virtual active and reactive power behavior and choosing different active voltage vectors and using each of them at different times among each period time, the best switching of the rotor side converter in doubly fed induction generator to have a smoother condition can be chosen. In this paper, a 15kw generator is simulated by the classic method which is direct power control, and this new method, predictive direct power control, and it will be shown how much the new method reduces the power ripple to have a smoother synchronization that doesn’t cause mechanical or electrical pressure for none of the grid and the doubly fed induction generator.
Abstract: This paper presents a new method of predicting power based on predictive direct power control. This method reduces power ripple in a doubly fed induction generator, which makes it possible to have a smoother synchronization with the grid in low constant frequency switching. To achieve fast and smooth grid synchronization without any over current, t...
Show More
Controlled Fusion: Magnetic and Inertial, Promises and Pitfalls
Issue:
Volume 9, Issue 6, November 2020
Pages:
104-108
Received:
30 November 2020
Accepted:
14 December 2020
Published:
22 December 2020
Abstract: As with biomass, hydro, solar and wind power, fusion power can also generate clean energy, using deuterium, an isotope of hydrogen, abundantly available in our oceans. Our sun uses hydrogen in a fusion process to generate power. It has been demonstrated that fusion power can be generated on earth, under carefully controlled conditions using deuterium and tritium instead of hydrogen. There are two fundamental approaches to controlled fusion: magnetic confinement fusion (MCF) first proposed at Princeton University in 1951, and inertial confinement fusion (ICF) that followed shortly thereafter, first proposed at the Lawrence Livermore Laboratories in 1970. Progress made on magnetic fusion led to the planning and construction of ITER (International Thermonuclear Experimental Reactor), expected to be completed in 2035. In this article, we explain the processes necessary to generate fusion power through MCF and ICF. Unlike nuclear power, as a practical means to generate electricity, controlled fusion has presented the technical/scientific community with a plethora of very difficult challenges. It is only recently, after decades of intense research in many laboratories worldwide, that we have begun to see devices being built on a fusion reactor scale and hence the design of ITER. The challenges are many but require patience and perseverance.
Abstract: As with biomass, hydro, solar and wind power, fusion power can also generate clean energy, using deuterium, an isotope of hydrogen, abundantly available in our oceans. Our sun uses hydrogen in a fusion process to generate power. It has been demonstrated that fusion power can be generated on earth, under carefully controlled conditions using deuteri...
Show More