Research Article | | Peer-Reviewed

Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield

Received: 11 May 2024     Accepted: 14 June 2024     Published: 19 June 2024
Views:       Downloads:
Abstract

In order to reduce the risk of large-scale thermal recovery of heavy oil in Bohai Oilfield, L Oilfield is selected to carry out horizontal well steam stimulation pilot tests. Previous studies have summarized the rationality of the injection parameters and initial production characteristics of this experiment, but the evaluation of its development effectiveness is still blank. Based on the study of the decline law of A23H well cold recovery using reservoir engineering methods, this article evaluates the initial production capacity, production increase effect, technical recoverable reserves, and throughput cycles of steam stimulation. The results show that the thermal recovery production of steam stimulation is three times that of cold recovery, which can significantly improve the production capacity of a single well. The initial daily oil production of two wells is 74m3/d and 90m3/d, respectively, which is 3.0 times and 3.6 times that of the initial production of cold recovery, exceeding the design level of the reservoir; The first round has the best yield increase effect, with an average daily oil increase of 31m3/d, and gradually decreasing thereafter. By the fifth round, it was only 13m3/d. In terms of yield increase multiples, each round can reach about 2 times; The technically recoverable reserves are 19.03 × 104m3, requiring 8-9 rounds. Through this performance evaluation, we have strengthened our confidence in promoting the application of steam injection technology in Bohai Oilfield to achieve large-scale thermal recovery.

Published in Science Discovery (Volume 12, Issue 3)
DOI 10.11648/j.sd.20241203.13
Page(s) 54-57
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Heavy Oil, Steam Throughput, Pilot Test, Effect Evaluation, Bohai Oilfield

1.前言
渤海油田稠油资源丰富,稠油探明地质储量占总探明地质储量50%以上[1-3]。对于地层原油粘度小于350mPa.s的普通稠油通过注水开发并辅以化学驱已经取得了很好的成功经验[4, 5],但对地层原油粘度大于350mPa.s的稠油来说,渤海油田也进行了很多热采尝试,如多元热流体吞吐[6, 7]、热水驱[8]、热稀油复合吞吐[9]和电加热等[10],但由于井型、井网、井距和完井方式等是建立在冷采基础上,虽然有一定增产效果,但对渤海油田稠油规模化热采指导意义不是很大。
相比陆上稠油油藏的热采开发,海上稠油热采具有“作业空间小、安全风险大、技术创新要求高、开发投入大”等特点[11]。应对上述特点,渤海油田经过多年技术攻关,在设备小型化、长效防砂、一体化高温注采管柱以及高温电潜泵等技术工艺方面取得突破的基础上,为了降低稠油规模化热采开发风险,利用在陆地油田已经成熟应用的蒸汽吞吐技术[12-14]开展L油田水平井蒸汽吞吐先导试验。前人已经对该先导试验注入参数的合理性[15]及吞吐初期生产特征[16]进行过总结,但对其开发效果的评价研究尚属空白,本文以L油田动态数据为基础,通过评价蒸汽吞吐初期产能、增产效果、技术可采储量和吞吐轮次等指标,为渤海油田稠油热采规模化开发提供指导依据。
2.渤海L油田水平井蒸汽吞吐先导试验概况
2.1.渤海L油田1-1308砂体基本情况
储量规模:砂体属于典型的河道型浅水三角洲沉积,含油面积2.06Km2,探明石油地质储量269.00×104m3;储层物性:孔隙度分布在24.8~38.8%之间,平均34.4%;渗透率主要集中在330.0~11116.9mD,平均3786.5mD,属于高孔高渗型储层;原油性质:地面原油密度0.983g/cm3,地面原油粘度4637mPa.s,地下原油粘度989.6mPa.s,属于普2类稠油[1],常规冷采开发经济性较差,需要进行热采开发。
2.2.井位部署
在1-1308砂体构造高部位部署2口井,遵循海上油田少井高产的原则[17],在井型上采取水平井(A22H和A23H),水平段长度均为300m,井距为150m。
2.3.开发方式
A23H井先冷采一年,然后进行蒸汽吞吐开发,A22H井直接进行蒸汽吞吐开发。
2.4.初期产能设计
借鉴渤海其它稠油油田水平井冷采产能资料,利用流度法确定冷采比采油指数为0.54 m3/(MPa·d·m)。设计蒸汽吞吐热采产能为冷采产能的3倍,热采比采油指数为1.62m3/(MPa·d·m)。设计生产压差为3MPa,A22H和A23H井初期产能分别为45m3/d和57m3/d。
2.5.注入参数
蒸汽吞吐注入参数为:注入温度>340°C,注入干度>0.4,注入速度300m3/d,焖井时间5天,A22H和A23H井第一周期注入量分别为3000m3和4500m3,以后逐轮增加。
2.6.开发现状
A22H和A23H井都已经完成了5轮次蒸汽吞吐,每轮次基本上都按照设计参数完成了注入。截止到目前,2口井累注汽5.35×104m3,累产油12.22×104m3
3.效果评价
3.1.数据处理
因受现场条件限制,各轮次实际生产时间不同,同时由于蒸汽吞吐周期内递减率较大[18],因此各轮次累产油、平均日产油和增油量等指标没有对比性(表1)。为了有较好的对比性,各轮次均选取相同的生产时间即A23H井第四轮次实际生产天数254天为统计标准计算相关指标,各轮次冷采油通过公式1预测得到。
表1 A22H/A23H井蒸汽吞吐各轮次产量统计表。

井号

轮次

第二轮

第三轮

第四轮

第五轮

A22H

生产时间

310

520

296

375

累产油

10625

19119

6309

6774

平均日产油

方/天

34

37

21

18

A23H

生产时间

323

331

254

680

累产油

8216

8860

6402

14179

平均日产油

方/天

25

27

25

21

3.2.A23H井冷采效果
A23H井冷采385天,累采油7417m3,平均日产油18.9m3/d,初期日产油25m3/d。生产稳定后日产油与生产时间表现为线性递减关系,如公式1。根据该递减关系预测A23H井冷采至2483天产量递减至0m3/d,预测累积产油量为25019m3
(1)
其中,q代表日产油,单位:m3/d;t代表累计生产天数,单位:d。
3.3.蒸汽吞吐初期产能
A22H和A23H井第一轮初期日产油分别为74m3/d和90m3/d,是冷采初期产量的3.0倍和3.6倍,超过了油藏设计水平,由此可知,蒸汽吞吐可以大幅度提高单井产能。
3.4.蒸汽吞吐增产效果
第一轮增产效果最好,平均日增油达到31m3/d,以后逐轮递减,到第五轮只有13m3/d,但从增产倍数来看,每轮次都可以达到2倍左右(表2)。
表2 A23H井蒸汽吞吐增产效果统计表。

轮次

第一轮

第二轮

第三轮

第四轮

第五轮

热采累产油

m3

12003

8603

7852

6062

5327

热采平均日产油

m3/d

47

34

31

28

21

冷采预测累产油

m3

4005

3488

2972

2113

2019

冷采平均日产油

m3/d

15.8

13.7

11.7

9.8

7.9

热采累增油

m3

7998

5115

4880

3949

3308

热采平均日增油

m3/d

31

20

19

18

13

3.5.技术可采储量预测
2口井累积产油量与累积注气量在半对数坐标上呈很好的直线关系(图1),因此蒸汽吞吐开发技术可采储量可用公式2 [19]计算得到:
图1 1-1308砂体蒸汽吞吐累注气与累产油关系曲线。
(2)
其中NR为蒸汽吞吐阶段技术可采储量,单位:104m3;A为图1直线段在纵轴上的截距(0.481),单位:104m3;B为直线斜率(0.072),单位:无因次。
根据公式2计算得到该砂体蒸汽吞吐阶段技术可采储量为19.03×104m3
3.6.蒸汽吞吐轮次预测
累产油与蒸汽吞吐轮次关系曲线如图2,二者有很好的线性关系,如公式3:
(3)
其中,Q代表累产油,单位:104m3;T代表蒸汽吞吐轮次,单位:次。
通过公式3计算可以得到,当Q=19.03×104m3,T=8.3,即采完技术可采储量需要8~9轮次。
图2 累产油与蒸汽吞吐轮次关系曲线。
3.7.蒸汽吞吐效果逐轮变差原因分析
2口井各轮次蒸汽吞吐平均日产油虽有一定差异,但整体上随着轮次的增加,平均日产油均呈下降趋势(图3),即蒸汽吞吐效果逐轮变差,其主要原因体现在以下两方面:
图3 A22H和A23H井不同轮次平均日产油对比图。
一是回采水率无法达到100%,地下存水量逐轮增加(表3)。地下存水过多,注入地下的蒸汽会先加热水,然后再加热原油,降低了蒸汽热利用率,减少了蒸汽波及体积,从而影响了蒸汽吞吐的效果。
表3 L油田蒸汽吞吐各轮次存水量统计表。

轮次

第一轮

第二轮

第三轮

第四轮

第五轮

累积注入量

m3

7501

16956

27526

39744

53544

累积采出量

m3

5290

12305

20733

29943

46110

累积存水量

m3

2211

4651

6793

9801

7434

累计回采水率

%

71

73

75

75

86

二是采出原油重组分如含蜡量和胶质含量随着开采轮次的增加逐渐增多(图4)。稠油油藏蒸汽吞吐时,蒸汽吞吐初期采出油原油粘度低,随着开采轮次增加逐渐变高,其原因是随着高温蒸汽的注入,原油发生了一定程度的裂解,这样原油中的轻馏分更容易被采出,表现为采出原油的馏分随回采轮次的增加而逐渐变重[20]。也就是说,随着蒸汽吞吐轮次的增加,地下原油轻组分逐渐减少,重组分逐渐增多,因此热采效果也逐渐变差。
图4 L油田原油常规分析胶质/含蜡量与吞吐轮次关系曲线。
4.结论与建议
渤海L油田蒸汽吞吐先导试验结果表明:蒸汽吞吐增产效果显著,2口井蒸汽吞吐第一轮初期日产油是冷采初期产量的3.0倍和3.6倍;第一轮次增产效果最好,平均日增油达到31m3/d,以后逐轮变差,到第五轮只有13m3/d,但从增产倍数来看,每轮次都可以达到2倍左右。无论是初期产能还是各轮次增产效果都达到了油藏设计水平,因此蒸汽吞吐技术是渤海油田规模化热采的有效途径。
1-1308砂体2口水平井蒸汽吞吐开发5轮次后累产油12.22×104m3,预测技术可采储量为19.03×104m3,共需要8~9轮次,为了对现场实践更有指导意义,建议根据经济评价结果继续研究经济可采储量及对应吞吐轮次。
地下存水率逐轮增加降低了蒸汽热利用率,减少了蒸汽波及体积,是蒸汽吞吐效果逐轮变差的主要原因,后续需要做针对性研究,量化回采水率对蒸汽吞吐的影响,并同步研究提高回采水率的方式方法。
References
[1] 吴婷婷, 张风义, 王大为等. 渤海稠油油藏分类方法及分类界限研究 [J]. 新疆石油天然气, 2019, 15(3): 64-69.
[2] 李廷礼, 张墨, 吴婷婷等. 渤海不同类型稠油油藏开发策略研究 [J]. 天然气与石油, 2023, 41(6): 110-116.
[3] 孙鹏宵, 刘英宪. 渤海稠油油藏开发现状及热采开发难点与对策 [J]. 中国海上油气, 2023, 35(2): 85-92.
[4] 孙福街. 中国海上油田高效开发与提高采收率技术现状及展望 [J]. 中国海上油气, 2023, 35(5): 91-99.
[5] 张健, 李宜强, 李先杰等. 渤海油田非连续化学驱提高采收率机理 [J]. 石油学报, 2021-4-18, 网络首发.
[6] 刘小鸿, 张风义, 黄 凯等. 南堡35-2海上稠油油田热采初探 [J]. 油气藏评价与开发, 2011, 1(1-2): 61-63, 77.
[7] 石飞, 常涛, 吴君达等. 海上多元热流体吞吐合理注采参数优化研究 [J]. 石油化工应用, 2023, 42(6): 49-52.
[8] 刘东, 廖辉, 冯海潮等. 渤海稠油油藏水驱后转热水驱物模实验及应用 [J]. 中国海上油气, 2023, 35(2): 101-110.
[9] 刘义刚, 张伟, 邹剑等. 海上稠油油藏热稀油复合吞吐解堵工艺技术研究 [J]. 山东石油化工学院学报, 2023, 31(4): 48-52.
[10] 方涛, 刘义刚, 白健华等. 海上电潜泵井空心杆电加热工艺技术研究 [J]. 中国海上油气, 2023, 35(2): 163-167.
[11] 苏彦春, 郑伟, 杨仁锋等. 海上稠油油田热采开发现状与展望 [J]. 中国海上油气2023, 35(5): 100-106.
[12] 刘文章. 我国深井蒸汽吞吐采油试验 [J]. 石油钻采工艺, 1986(2): 59-64.
[13] 顾浩, 孙建芳, 秦学杰等. 稠油热采不同开发技术潜力评价 [J]. 油气地质与采收率, 2018, 25(3): 112-116.
[14] 姜得英. 稠油水平井蒸汽吞吐开发实践 [J]. 中国石油和化工标准与质量, 2023, 6: 103-105.
[15] 刘义刚, 钟立国, 刘建斌等. LD27-2油田稠油油藏蒸汽吞吐中后期注采参数优化研究 [J]. 能源与环保, 2020, 42(8): 86-91, 108.
[16] 郑伟, 张利军, 朱国金, 等. 渤海油田稠油水平井蒸汽吞吐开发效果分析 [J]. 石油地质与工程, 2019, 33(4): 80-82, 87.
[17] 刘东东, 张启龙, 翁昊阳等. 渤海油田稳产增产钻完井技术进展与展望 [J]. 天然气与石油, 2024-03-21, 网络首发.
[18] 黄琴, 蔡晖, 桑丹等. 海上稠油油田水平井多轮蒸汽吞吐生产规律研究 [J]. 非常规油气2023, 10(2): 73-79.
[19] 张锐等. 稠油热采技术 [M]. 北京:石油工业出版社, 1999. 4: 303-305.
[20] 石乔木, 李韬, 董晓玲等. 扶余油田不同开发方式原油性质的变化 [J]. 石油知识, 2018, 1: 45-47.
Cite This Article
  • APA Style

    Chai, S., Lian, Z., Zheng, J., Li, E. (2024). Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield. Science Discovery, 12(3), 54-57. https://doi.org/10.11648/j.sd.20241203.13

    Copy | Download

    ACS Style

    Chai, S.; Lian, Z.; Zheng, J.; Li, E. Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield. Sci. Discov. 2024, 12(3), 54-57. doi: 10.11648/j.sd.20241203.13

    Copy | Download

    AMA Style

    Chai S, Lian Z, Zheng J, Li E. Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield. Sci Discov. 2024;12(3):54-57. doi: 10.11648/j.sd.20241203.13

    Copy | Download

  • @article{10.11648/j.sd.20241203.13,
      author = {Shichao Chai and Zhengxin Lian and Jianjun Zheng and Enlin Li},
      title = {Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield
    },
      journal = {Science Discovery},
      volume = {12},
      number = {3},
      pages = {54-57},
      doi = {10.11648/j.sd.20241203.13},
      url = {https://doi.org/10.11648/j.sd.20241203.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20241203.13},
      abstract = {In order to reduce the risk of large-scale thermal recovery of heavy oil in Bohai Oilfield, L Oilfield is selected to carry out horizontal well steam stimulation pilot tests. Previous studies have summarized the rationality of the injection parameters and initial production characteristics of this experiment, but the evaluation of its development effectiveness is still blank. Based on the study of the decline law of A23H well cold recovery using reservoir engineering methods, this article evaluates the initial production capacity, production increase effect, technical recoverable reserves, and throughput cycles of steam stimulation. The results show that the thermal recovery production of steam stimulation is three times that of cold recovery, which can significantly improve the production capacity of a single well. The initial daily oil production of two wells is 74m3/d and 90m3/d, respectively, which is 3.0 times and 3.6 times that of the initial production of cold recovery, exceeding the design level of the reservoir; The first round has the best yield increase effect, with an average daily oil increase of 31m3/d, and gradually decreasing thereafter. By the fifth round, it was only 13m3/d. In terms of yield increase multiples, each round can reach about 2 times; The technically recoverable reserves are 19.03 × 104m3, requiring 8-9 rounds. Through this performance evaluation, we have strengthened our confidence in promoting the application of steam injection technology in Bohai Oilfield to achieve large-scale thermal recovery.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Evaluation of the Pilot Test Effect of Steam Stimulation in Horizontal Wells of Sand Bodies 1-1308 in Bohai L Oilfield
    
    AU  - Shichao Chai
    AU  - Zhengxin Lian
    AU  - Jianjun Zheng
    AU  - Enlin Li
    Y1  - 2024/06/19
    PY  - 2024
    N1  - https://doi.org/10.11648/j.sd.20241203.13
    DO  - 10.11648/j.sd.20241203.13
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 54
    EP  - 57
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20241203.13
    AB  - In order to reduce the risk of large-scale thermal recovery of heavy oil in Bohai Oilfield, L Oilfield is selected to carry out horizontal well steam stimulation pilot tests. Previous studies have summarized the rationality of the injection parameters and initial production characteristics of this experiment, but the evaluation of its development effectiveness is still blank. Based on the study of the decline law of A23H well cold recovery using reservoir engineering methods, this article evaluates the initial production capacity, production increase effect, technical recoverable reserves, and throughput cycles of steam stimulation. The results show that the thermal recovery production of steam stimulation is three times that of cold recovery, which can significantly improve the production capacity of a single well. The initial daily oil production of two wells is 74m3/d and 90m3/d, respectively, which is 3.0 times and 3.6 times that of the initial production of cold recovery, exceeding the design level of the reservoir; The first round has the best yield increase effect, with an average daily oil increase of 31m3/d, and gradually decreasing thereafter. By the fifth round, it was only 13m3/d. In terms of yield increase multiples, each round can reach about 2 times; The technically recoverable reserves are 19.03 × 104m3, requiring 8-9 rounds. Through this performance evaluation, we have strengthened our confidence in promoting the application of steam injection technology in Bohai Oilfield to achieve large-scale thermal recovery.
    
    VL  - 12
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Tianjin Branch, CNOOC, Co, Ltd, Tianjin, China

    Biography: 柴世超(1971-),男,高级工程师,1996年毕业于中国石油大学(华东)油藏工程专业,2012年毕业于中国石油勘探开发科学研究院油气田开发工程专业,获硕士学位。在中海石油(中国)有限公司天津分公司从事油气田开发方面的研究工作。

  • Tianjin Branch, CNOOC, Co, Ltd, Tianjin, China

  • Tianjin Branch, CNOOC, Co, Ltd, Tianjin, China

  • Tianjin Branch, CNOOC, Co, Ltd, Tianjin, China