In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.
Published in | American Journal of Nanosciences (Volume 3, Issue 4) |
DOI | 10.11648/j.ajn.20170304.12 |
Page(s) | 81-85 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Molybdenum Oxide, S. Aureus, Nano Rods, Band Gap Energy
[1] | Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, G. D. Stucky, NanoLett. 9, 4215–4220 (2009). |
[2] | D. P. Debecker, M. Stoyanova, U. Rodemerck, E. M. Gaigneaux, Stud. Surf. Sci. Catal. 175, 581–585 (2010). |
[3] | Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J. Zhu, Cryst. Eng. Comm. 12, 3740-3747 (2010). |
[4] | C. Raj, A. C. Bose, Beilstein J. Nanotechnol. 2, 585–592(2011). |
[5] | S. Ganguly, R. George, Bull. Mater. Sci. 30, 183–185(2007). |
[6] | W. Dong, H. Huang, Y. Zhu, X. Li, X. Wang, C. Li, B. Chen, G. Wang, Z. Shi, Nanotechnology 23, 425602 (2012). |
[7] | L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, J. Phys. Chem. C 114, 21868-21872 (2010). |
[8] | A. M. Hashema, H. Groult, A. Mauger, K. Zaghib, C. M. Julien, J. Power Sources 219 126-132(2012). |
[9] | Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang, P. J. Power Sources 226, 107-111 (2013). |
[10] | F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416-2421 (2010). |
[11] | F. Cheng, G. Fang, X. Fan, N. Liu, N. Sun, P. Qin, Q. Zheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 95, 2914–2919 (2011). |
[12] | M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Organic Electronics, 10, 932-938 (2009). |
[13] | K. Bange, Sol. Energy Mater. Sol. Cells 58, 1-131 (1999). |
[14] | X. W. Lou, H. C. Zeng, Chem. Mater. 14, 4781–4789 (2002). |
[15] | P. Badica, Cryst. Growth Des. 7, 794-801 (2007). |
[16] | N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham, J. Mater. Chem. 19 2526–2552 (2009). |
[17] | J. Song, X. Ni, L. Gao, L. Zheng, Chem. Phy. 102, 245–248(2007). |
[18] | S. S. Mahajan, S. H. Mujawar, P. S. Shinde, A. I. Inamdar, P. S. Patil, Int. J. Electrochem. Sci. 3, 953-960 (2008). |
[19] | C. Raj, A. C. Bose, J. Alloys Compd. 509, 8105-8110 (2011). |
[20] | L. P. M. Cai, X. R. Zheng, NanoLett. 11, 872–877 (2011). |
[21] | B. B. Wang, K. Zhu, J. Feng, J. Y . Wu, R. W. Shao, K. Zheng, Q. J. Cheng, Journal of Alloys and Compounds, 661, 66-71 (2016) |
[22] | D. Y. Park, Y. K. Sun, S. T. Myung, Journal of Power Sources, 280, 1-4 (2015). |
[23] | C. A. Ellefson, O. Marin-Flores, S. Ha, M. G. Norton, J. Mater. Sci. 47, 2057-2071 (2012). |
[24] | J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164-1167 (2006). |
[25] | K. V. Özdokur, A. Y. Tatlı, B. Yılmaz, S. Koçak, F. N. Ertaş, Int. J. of Hydrogen Energy, 41, 5927-5933 (2016). |
[26] | A. Kumar and G. Pandey, Chemical Science Transactions 2017, 6(3), 385-392, DOI:10.7598/cst2017.1378 |
[27] | M. Karthikeyan, S. Um, Thin Solid Films, 606, 63-73 (2016). |
[28] | A. Kumar, G. Pandey, Desalination and Water Treatment, 71 (2017) 406–419, doi: 10.5004/dwt.2017.20541 |
[29] | R. Yuksel, S. Coskun, H. E. Unalan, Electrochimica Acta, 193, 39-44 (2016). |
[30] | A. Kumar, G. Pandey, Chem Sci J 8: (2017) 164. doi: 10.4172/2150-3494.1000164 |
[31] | A. Kumar, D. Kumar, G. Pandey. J. Technological Advances and Scientific Res. 2016; 2(4):166-169, DOI: 10.14260/jtasr/2016/29 |
[32] | Y. Song, Y. Zhao, Z. Huang, J. Zhao, Journal of Alloys and Compounds, 693, 1290-1296 (2017). |
[33] | A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Adv. Res. J. in Sci.e, Engi. and Tech., 2, 12, 2015, 50-55, DOI 10.17148/IARJSET.2015.21208 |
[34] | M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Solar Energy Materials and Solar Cells, 142, 34-41 (2015). |
[35] | A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Journal Inno. Res. in Sci., Eng. and Tech.,. 4, 12, 2015, 12721-12731, DOI:10.15680/IJIRSET.2015.0412097 |
[36] | A. Kumar, G. Pandey. American J. of Nano Research and Appli. Vol. 5, No. 4, 2017, pp. 40-48. doi: 10.11648/j.nano.20170504.11 |
[37] | F. Delalat, M. Ranjbar, H. SalamatiSolar Energy Materials and Solar Cells, 144, 165-172 (2016). |
[38] | Cibele, P. D. Volanti, A. E. Nogueira, C. A. Zamperini, Materials & Design, 115, 73-81 (2017). |
[39] | E. C. Vergani, E. Longo, G. Totea, D. Ionita, I. Demetrescu, Journal of Bionic Engineering, 12, 583-591 (2015). |
[40] | S. Shafaei, D. V. Opdenbosch, T. Fey, M. Koch, T Kraus, J. P. Guggenbichler, C. Zollfrank, Materials Science and Engineering: C, 58, 1064-1070 (2016). |
APA Style
Azad Kumar, Gajanan Pandey. (2017). Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity. American Journal of Nanosciences, 3(4), 81-85. https://doi.org/10.11648/j.ajn.20170304.12
ACS Style
Azad Kumar; Gajanan Pandey. Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity. Am. J. Nanosci. 2017, 3(4), 81-85. doi: 10.11648/j.ajn.20170304.12
@article{10.11648/j.ajn.20170304.12, author = {Azad Kumar and Gajanan Pandey}, title = {Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity}, journal = {American Journal of Nanosciences}, volume = {3}, number = {4}, pages = {81-85}, doi = {10.11648/j.ajn.20170304.12}, url = {https://doi.org/10.11648/j.ajn.20170304.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20170304.12}, abstract = {In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.}, year = {2017} }
TY - JOUR T1 - Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity AU - Azad Kumar AU - Gajanan Pandey Y1 - 2017/12/18 PY - 2017 N1 - https://doi.org/10.11648/j.ajn.20170304.12 DO - 10.11648/j.ajn.20170304.12 T2 - American Journal of Nanosciences JF - American Journal of Nanosciences JO - American Journal of Nanosciences SP - 81 EP - 85 PB - Science Publishing Group SN - 2575-4858 UR - https://doi.org/10.11648/j.ajn.20170304.12 AB - In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens. VL - 3 IS - 4 ER -