| Peer-Reviewed

Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review

Received: 2 August 2017     Accepted: 15 August 2017     Published: 7 September 2017
Views:       Downloads:
Abstract

Dye sensitized semiconductor can constitute efficient photochemical systems for the environmental remediation. Using metal free phthalocyanines (H2Pc) and metallophthalocyanine (MPc) complexes, has attracted much interest owing to its high stability, visible light photosensitivity and catalytic properties. Phthalocyanine sensitized titaniumdioxide (Pc/TiO2) catalyst is able to achieve the degradation of many organic pollutants by visible light as energy and O2 in the air as the oxidant under ambient conditions. Owing to above mentioned properties, H2Pc and MPc immobilized TiO2 photocatalysts have been tested for photocatalytic removal of organic and inorganic pollutants. In this review, production, characterization and application of Pc/TiO2 catalysts are described and particularly focused on the studies concerning the photocatalytic applications either in the form of nano dust for suspension applications or thin film. Pollutants were classified into two main groups; namely organic toxic pollutants and dyes.

Published in American Journal of Nanosciences (Volume 3, Issue 4)
DOI 10.11648/j.ajn.20170304.11
Page(s) 63-80
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Heterogen Photocatalysis, Photocatalytic Remediation, Dye Sensitized TiO2, Phthalocyanine Sensitized TiO2

References
[1] Legrini, O.; Oliveros, E.; Braun, A. M. 1993. Photochemical Processes for Water Treatment. Chem. Rev. 93 (2), 671-689.
[2] Fox, M. A.; Dulay, M. T. 1993. Heterogeneous Photocatalysis. Chem. Rev. 93 (1), 341, 357.
[3] Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. 1995. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95 (1), 69–96.
[4] Safarzadeh-Amiri, A.; Bolton, J. R.; Cater, S. R.; 1997. Ferrioxalate-Mediated Photodegradation of Organic Pollutants in Contaminated Water. Water Res. 31 (4), 787-798.
[5] Czaplicka, M. 2003. Sources and Transformations of Chlorophenols in the Natural Environment. Sci. Tot. Environ. 322 (1-3), 21-39.
[6] Carp, O.; Huisman, C. L.; Reller, A. 2004. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid. Chem. 32 (1-2), 33-177.
[7] Pera-Titus, M.; Garcia-Molina, V.; Banos, M. A.; Gimenez, J.; Esplugas, S. 2004. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review. Appl. Cat. B-Environ. 47 (4), 219-256.
[8] Bahnemann, D. 2004. Photocatalytic Water Treatment: Solar Energy Applications. Sol. Energy. 77 (5), 445-459.
[9] Demeestere, K.; Dewulf, J.; Van Langenhove, H. 2007. Heterogeneous Photocatalysis as an Advanced Oxidation Process for the Abatement of Chlorinated, Monocyclic Aromatic and Sulfurous Volatile Organic Compounds in Air: State of the Art. Crit. Rev. Environ. Sci. Technol. 37 (6), 489-538.
[10] Blanco-Galvez, J.; Fernandez-Ibanez, P.; Malato-Rodriguez, S. 2007. Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. J. Sol. Ener. Eng. 129 (1), 4-15.
[11] Chen, C.; Ma, V.; Zhao, J. 2010. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation. J. Chem. Soc. Rev. 39 (11), 4206-4219.
[12] Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. 2015. Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review. RSC Adv. 5 (19), 14610-14630.
[13] Fujishima, A. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (5358), 37-38.
[14] Fujishima, A. 2005. Discovery and Applications of Photocatalysis- Creating a Comfortable Future by Making Use of Light Energy. Japan Nanonet Bulletin 44, 1-3.
[15] O’Regan, B.; Gratzel, M. 1991. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 353, 737-740; DOI: 10.1038/353737a0
[16] Gratzel, M. 2001. Photoelectrochemical Cells. Nature 414 (6861), 338-344.
[17] Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Gratzel, M. 1996. Femtosecond Electron-Transfer Dynamics at a Sensitizing Dye-Semiconductor (TiO2). Interface. Phys. Chem. 100 (23), 9577-9578.
[18] Ragoussi, M-T.; Ince, M.; Torres, T. 2013. Recent Advances in Phthalocyanine Based Sensitizers for Dye-Sensitized Solar Cell. Eur. J. Org. Chem. 2013 (29), 6475-89.
[19] Jiang, Y.; Guo, L.; Zhang, W.; Dai, F.; Yan, Y.; Zhang, F.; Lv, H. 2014. Preparation of Zinc Tetraaminophthalocyanine Sensitized TiO2 Hollow Nanospheres and Their Enhanced Photocatalytic Properties under Visible Light. Desalin. Water Treat. 52 (19-21), 3489-3496.
[20] Martín-Gomis, L.; Fernández-Lázaro, F.; Sastre-Santos, A. 2014. Advances in Phthalocyanine-Sensitized Solar Cells (PcSSCs). J. Mater. Chem. A. 2 (38), 15672-15682.
[21] Fan, Fu-Ren F.; Bard, Allen J. 1979. Spectral Sensitization of the Heterogeneous Photocatalytic Oxidation of Hydroquinone in Aqueous Solutions at Phthalocyanine-Coated Titanium Dioxide Powders. J. Am. Chem. Soc. 101 (20), 6139-6140.
[22] Giraudeau, A.; Fan, Fu-Ren F.; Bard, Allen J. 1980. Semiconductor Electrodes. 30. Spectral Sensitization of the Semiconductors n-TiO2 and n-WO3 with Metal Phthalocyanines. J. Am. Chem. Soc. 102 (16), 5137-5142.
[23] Jaeger, C. D.; Fan, Fu-Ren F.; Bard, Allen J. 1980. Semiconductor Electrodes. 26. Spectral Sensitization of Semiconductors with Phthalocyanine. J. Am. Chem. Soc. 102 (8), 2592-2598.
[24] Hodak, J.; Qinteros, C.; Litter, M. I.; Roman, E. S. 1996. Sensitization of TiO2 with Phthalocyanines. Part 1.—Photo-Oxidations Using Hydroxoaluminium Tricarboxymonoamidephthalocyanine Adsorbed on TiO2. J. Chem. Soc., Faraday Trans. 92 (24), 5081-5088.
[25] Ranjit, K. T.; Willner, I.; Bossmann, S.; Braun, A. 1998. Iron(III)- Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants. J. Phys. Chem. B. 102 (47), 9397-9403.
[26] Iliev, V. 2002. Phthalocyanine-Modified Titania-Catalyst for Photooxidation of Phenols by Irradiation with Visible Light. J. Photochem. Photobiol. A Chem. 151 (1-3), 195-199.
[27] Mele, G.; Ciccarella, G.; Vasapollo, G.; Garcia-Lopez, E.; Palmisano, L.; Schiavello, M. 2002. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Samples Impregnated with Cu(II)-Phthalocyanine. Appl. Catal. B Environ. 38 (4), 309-319.
[28] Mele, G.; Sole, R. D.; Vasapollo, G.; Garcia-Lopez, E.; Palmisano, L. Schiavello, M. 2013. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Functionalized Cu(II)-Porphyrin or Cu(II)–Phthalocyanine. J. Catal. 217 (2), 334-342.
[29] Mele, G.; Garcia-Lopez, E.; Palmisano, L.; Dyrda, G.; Slota, R. 2007. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes. J. Phys. Chem. C, 111 (17), 6581-6588.
[30] Slota, R.; Dyrda, G.; Szczegot, K.; Mele, G.; Pio, I. 2011. Photocatalytic Activity of Nano and Microcrystalline TiO2 Hybrid Systems Involving Phthalocyanine or Porphyrin Sensitizers. Photochem. Photobiol. Sci. 10 (3), 361-366.
[31] Marci, G.; Garcia- Lopez, E.; Mele, G.; Palmisano, L.; Dyrda, G.; Slota, R. 2009. Comparison of the Photocatalytic Degradation of 2-Propanol in Gas–Solid and Liquid–Solid Systems by Using TiO2–LnPc2 Hybrid Powders. Catal. Today. 143 (3-4), 203-210.
[32] Ogunbayo, Toafeek F.; Nyokong, T. 2011. Phototransformation of 4-Nitrophenol Using Pd Phthalocyanines Supported on Single Walled Carbon Nanotubes. J. Mol. Catal. A Chem. 337 (1-2), 68-76.
[33] Sun, A.; Zhang, G.; Xu, Y. 2005. Photobleaching of Metal Phthalocyanine Sulfonates under UV and Visible Light Irradiation over TiO2 Semiconductor. Mater. Lett. 59 (29-30), 4016-4019.
[34] Chun-Li, K.; Yu, L.; Ping, G.; Fan, Z.; Hong-Bing, Y.; Xue-Yu, L. 2007. Photooxidation of Furfural with Phthalocyanine Sensitized TiO2 Particle Xenon Lamp. Chem. Res. Chin. Univ. 23 (2), 154-158.
[35] Palmisano, G.; Gutierrez, C. M.; Ferrer, L. M.; Gill-Luna, M. D.; Augugliaro, V.; Yurdakal, S.; Pagliaro, M. 2008. TiO2/ORMOSIL Thin Films Doped with Phthalocyanine Dyes: New Photocatalytic Devices Activated by Solar Light. J. Phys. Chem. C. 112, 2667-2670.
[36] Sun, Q.; Xu, Y. 2009. Sensitization of TiO2 with Aluminum Phthalocyanine: Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light. J. Phys. Chem. C. 113 (28), 12387-12394.
[37] Ebrahimian, A.; Zanjanchi, M. A.; Noei, H.; Arvand, M.; Wang, Y. 2014. TiO2 Nanoparticles Containing Sulphonated Cobalt Phthalocyanine: Preparation, Characterization and Photocatalytic Performance. J. Environ. Chem. Eng. 2 (1), 484-494.
[38] Smida, H. B.; Beicheickh, M.; Jamoussi, B. 2013. Degradation of Hydroxytyrosol in Olive Oil Mill Wastewaters using Thermosensitive Zinc Phthalocyanine-Modified Titanium Dioxide. J. Resid. Sci. Technol. 10 (1), 47-54.
[39] Meichtry, J. M.; Rivera, V.; Lorio, Y.; Rodriguez, H. B.; Roman, E. S.; Grela, M. A.; Litter, M. I. 2009. Photoreduction of Cr(VI) Using Hydroxoaluminium tricarboxymonoamide Phthalocyanine Adsorbed on TiO2. Photochem. Photobiol. Sci. 8 (5), 604-12.
[40] Shibata, H.; Ohshika, S.; Ogura, T.; Watanabe, S.; Nishio, K.; Sakai, H.; Abe, M.; Hashimoto, K.; Matsumoto, M. 2011. Preparation and Photocatalytic Activity under Visible Light Irradiation of Mesostructured Titania Particles Modified with Phthalocyanine in the Pores. J. Photochem. Photobiol. A Chem. 217 (1), 136-140.
[41] Mesgari, Z.; Gharagozlou, M.; Khosravi, A.; Gharanjig, K. 2012. Spectrophotometric Studies of Visible Light Induced Photocatalytic Degradation of Methyl Orange Using Phthalocyanine-Modified Fe-Doped TiO2 Nanocrystals. Spectrochim. Acta Part A. 92, 148-153.
[42] Mesgari, Z.; Gharagozlou, M.; Khosravi, A.; Gharanjig, K. 2012. Synthesis, Characterization and Evaluation of Efficiency of New Hybrid Pc/Fe-TiO2 Nanocomposite As Photocatalyst for Decolorization of Methyl Orange Using Visible Light Irradiation. Appl. Catal. A General. 411-412, 139-145.
[43] Chen, F.; Deng, Z.; Li, X.; Zhang, J.; Zhao, J. 2005. Visible Light Detoxification by 2,9,16,23-Tetracarboxyl Phthalocyanine Copper Modified Amorphous Titania. Chem. Phys. Lett. 415 (1-3), 85-88.
[44] Wang, Z.; Mao, W.; Chen, H.; Zhang, F.; Fan, X.; Qian, G. 2006. Copper(II) Phthalocyanine Tetrasulfonate Sensitized Nanocrystalline Titania Photocatalyst: Synthesis In Situ and Photocatalysis Under Visible Light. Catal. Commun. 7 (8), 518-522.
[45] Zhiyu, W.; Haifeng, C.; Peisong, T.; Weiping, M.; Fuan, Z.; Guodong, Q.; Xianping, F. 2006. Hydrothermal In Situ Preparation of the Copper Phthalocyanine Tetrasulfonate Modified Titanium Dioxide Photocatalyst. Colloid. Surf. A: Physicochem. Eng. Aspects. 289 (1-3), 207-211.
[46] Li, X. P.; Chen, F.; Zhang, J. 2007. Preparation of Phthalocyanine Modified Mesoporous Titania and Its Visible Light Photocatalytic Activity. Chinese J. Catal. 28 (3), 229-233.
[47] Hui, Y.; Shen, Q. H.; Gao, J. W. 2007. Low Temperature Preparation of Phthalocyanine-Sensitized Mischcrystal TiO2 Film and Its Catalysis for Degradation of Rhodamine B. Chinese J. Catal. 28 (12), 1072-1076.
[48] Zhang, M.; Shao, C.; Guo, Z.; Zhang, Z.; Mu, H.; Cao, T.; Liu, Y. 2011. Hierarchical Nanostructures of Copper(II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties. ACS Appl. Mater. Interfac. 3 (2), 369–377.
[49] Jing, S.; Zhao, F. W.; Zhu, T.; Li, J. 2011. Photocatalytic Degradation of Rhodamine B By Dye-Sensitized TiO2 under Visible-Light Irradiation. Sci. Chinese Chem. 54 (1), 167-172.
[50] Mekprasart, W.; Vittayakorn, N.; Pecharapa, W. 2012. Ball-Milled CuPc/TiO2 Hybrid Nanocomposite and its Photocatalytic Degradation of Aqueous Rhodamine B. Mater. Res. Bull. 47 (11), 3114-3119.
[51] Liao, L.; Huang, C. X.; Chen, J. S.; Wu, Y. T.; Han, Z. Z.; Pan, H. B.; Shen, S. 2012. Synthesis of CuPc/TiO2 Nanotube Composite Materials With Large Surface Area and Their Photocatalytic Activity under Visible Light. Chinese J. Catal. 33 (6), 1048-1054.
[52] Vallejo, W.; Diaz-Uribe, C.; Cantillo, A. 2015. Methylene Blue Photocatalytic Degradation under Visible Irradiation On TiO2 Thin Films Sensitized With Cu And Zn Tetracarboxyphthalocyanines, J. Photochem. Photobiol. A Chem. 299, 80-86.
[53] Zhong, C. Y.; Pan, H. B.; Guo, L. F.; Huang, J. L. 2007. Tetrasulfophthalocyaninatozinc-Sensitized Titania Synthesized by A Novel In-Situ And Self-Assembly Process and Photocatalytic Activity under Visible-Light Irradiation. Spectroscopy and spectral analysıs. 27 (11), 2329-2332.
[54] Gao, H.; Wu, C.; Li, S.; Yan, Y.; Huo, P. 2008. Preparation and Photocatalysis Properties of Visible Light Responsive Photocatalyst Tri-CoPc/TiO2/Na2Ti3O7. Fres. Environ. Bull. 17 (12A), 2059-2063.
[55] Huo, P.; Yan, Y.; Li, S.; Li, H.; Huang, W. 2009. Preparation and Characterization of Cobalt Sulfophthalocyanine/TiO2/Fly-Ash Cenospheres Photocatalyst and Study on Degradation Activity under Visible Light. Appl. Surf. Sci. 255 (15), 6914-6917.
[56] Li, L.; Xin, B. F. 2010. Photogenerated Carrier Transfer Mechanism and Photocatalysis Properties of TiO2 Sensitized by Zn(II) Phthalocyanine. J. Central South Univ. Technol. 17 (2), 218-222.
[57] Li, S.; Cheng, Y.; Gao, H. 2010. CESCE’10 Proceedings of the 2010 International Conference on Challenges in Environmental Science and Computer Engineering 2. 413-416.
[58] Wang, S-H.; Fang, Y-F.; Yang, Y.; Liu, J-Z.; Deng, A-P.; Zhao, X-R.; Huang, Y-P. 2011. Catalysis of Organic Pollutant Photodegradation by Metal Phthalocyanines Immobilized on TiO2@SiO2. Chines Sci. Bull. 56 (10), 969-976.
[59] Oliveira, D. F. M.; Batista, P. S.; Muller Jr P. S.; Velani, V.; França, M. D.; Souza, D. R.; Machado, A. E. H. 2011. Evaluating the Effectiveness of Photocatalysts Based on Titanium dioxide in the Degradation of the Dye Ponceau 4R. Dyes and Pigments. 92 (1), 563-572.
[60] Guo, Z.; Chen, B.; Mu, J.; Zhang, M.; Zhang, P.; Zhang, Z.; Wang, J.; Zhang, X.; Sun, Y.; Shao, C.; Liu, Y. 2012. Iron Phthalocyanine/TiO2 Nanofiber Heterostructures With Enhanced Visible Photocatalytic Activity Assisted With H2O2. J. Haz. Mat. 219-220, 156– 163.
[61] Wu, S. H.; Wu, J. L.; Jia, S. Y.; Chang, Q. W.; Ren, H. T.; Liu, Y. 2013. Cobalt(II) Phthalocyanine-Sensitized Hollow Fe3O4@SiO2@TiO2 Hierarchical Nanostructures: Fabrication and Enhanced Photocatalytic Properties. Appl. Surf. Sci. 287, 389- 396.
[62] Yang, Y. Z.; Sun, R. J.; Wu, Y. C.; Tao, L.; Shi, C. W. 2011. Immobilization of A Series of Homo/Heterobinuclear Metal (II) Phthalocyanine Hexasulphonates on Nanocrystalline TiO2 Thin Films and Their Application in the Degradation of Methylene Blue. Adv. Mater. Res, Progress in Environ. Scie. Eng. 356-360, 1728-1732.
[63] You, H.; Zhao, Y. 2016. Synthesis, Characterization and Visible Photocatalytic Performance of Iron (III) Tetracarboxyphthalocyanine Sensitized TiO2 Photocatalyst. J. Phys. Chem. Biophys. 6:1, http://dx.doi.org/10.4172/2161-0398.1000199
[64] Bayrak, R.; Albay, C.; Koç, M.; Altın, İ.,; Değirmencioğlu, İ.; Sökmen, M. 2016. Preparation of phthalocyanine/TiO2 nanocomposites for photocatalytic removal of toxic Cr(VI) ions, Proc. Safety and Evviron. Protec., 102, 294-302, 10.1016/j.psep.2016.03.023
[65] Albay, C.; Koç, M.; Altın, İ.; Bayrak, R.; Değirmencioğlu, İ.; Sökmen, M. 2016. New dye sensitized photocatalysts: Copper(II)-phthalocyanine/TiO2 nanocomposite for water remediation, J. Photochem. Photobiol. A Chem., 324, 117-125, 10.1016/j.jphotochem.2016.03.024
[66] Koç, M.; Albay, C.; Altın, İ.; Bayrak, R.; Değirmencioğlu, İ.; Sökmen, M. Dye Sensitization of TiO2 with A Group of Novel Azomethine-bridged Phenolic Metallo- Phthalocyanines: A Comparative Study, Desalin Water Treat. (in press).
[67] Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. 2016. Quaternized zinc(II) phthalocyanine-sensitized TiO2: Surfactant-modified sol-gel synthesis, characterization and photocatalytic applications, Desalin Water Treat., 57, 16196-16207, 10.1080/19443994.2015.108453.
Cite This Article
  • APA Style

    Münevver Sökmen, Melek Koc Kesir, Suliman Yousef Alomar. (2017). Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review. American Journal of Nanosciences, 3(4), 63-80. https://doi.org/10.11648/j.ajn.20170304.11

    Copy | Download

    ACS Style

    Münevver Sökmen; Melek Koc Kesir; Suliman Yousef Alomar. Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review. Am. J. Nanosci. 2017, 3(4), 63-80. doi: 10.11648/j.ajn.20170304.11

    Copy | Download

    AMA Style

    Münevver Sökmen, Melek Koc Kesir, Suliman Yousef Alomar. Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review. Am J Nanosci. 2017;3(4):63-80. doi: 10.11648/j.ajn.20170304.11

    Copy | Download

  • @article{10.11648/j.ajn.20170304.11,
      author = {Münevver Sökmen and Melek Koc Kesir and Suliman Yousef Alomar},
      title = {Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review},
      journal = {American Journal of Nanosciences},
      volume = {3},
      number = {4},
      pages = {63-80},
      doi = {10.11648/j.ajn.20170304.11},
      url = {https://doi.org/10.11648/j.ajn.20170304.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20170304.11},
      abstract = {Dye sensitized semiconductor can constitute efficient photochemical systems for the environmental remediation. Using metal free phthalocyanines (H2Pc) and metallophthalocyanine (MPc) complexes, has attracted much interest owing to its high stability, visible light photosensitivity and catalytic properties. Phthalocyanine sensitized titaniumdioxide (Pc/TiO2) catalyst is able to achieve the degradation of many organic pollutants by visible light as energy and O2 in the air as the oxidant under ambient conditions. Owing to above mentioned properties, H2Pc and MPc immobilized TiO2 photocatalysts have been tested for photocatalytic removal of organic and inorganic pollutants. In this review, production, characterization and application of Pc/TiO2 catalysts are described and particularly focused on the studies concerning the photocatalytic applications either in the form of nano dust for suspension applications or thin film. Pollutants were classified into two main groups; namely organic toxic pollutants and dyes.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Phthalocyanine-TiO2 Nanocomposites for Photocatalytic Applications: A Review
    AU  - Münevver Sökmen
    AU  - Melek Koc Kesir
    AU  - Suliman Yousef Alomar
    Y1  - 2017/09/07
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajn.20170304.11
    DO  - 10.11648/j.ajn.20170304.11
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 63
    EP  - 80
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20170304.11
    AB  - Dye sensitized semiconductor can constitute efficient photochemical systems for the environmental remediation. Using metal free phthalocyanines (H2Pc) and metallophthalocyanine (MPc) complexes, has attracted much interest owing to its high stability, visible light photosensitivity and catalytic properties. Phthalocyanine sensitized titaniumdioxide (Pc/TiO2) catalyst is able to achieve the degradation of many organic pollutants by visible light as energy and O2 in the air as the oxidant under ambient conditions. Owing to above mentioned properties, H2Pc and MPc immobilized TiO2 photocatalysts have been tested for photocatalytic removal of organic and inorganic pollutants. In this review, production, characterization and application of Pc/TiO2 catalysts are described and particularly focused on the studies concerning the photocatalytic applications either in the form of nano dust for suspension applications or thin film. Pollutants were classified into two main groups; namely organic toxic pollutants and dyes.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey

  • College of Science, King Saud University, Riyad, Saudi Arabia

  • Sections