| Peer-Reviewed

Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon)

Received: 27 June 2022    Accepted: 12 July 2022    Published: 20 July 2022
Views:       Downloads:
Abstract

In tropical countries some non-biting flies alone or in combination cause myiasis infections. Nowaday, myiasis cases are increasing in urban and rural areas but nothing is known concerning the composition and structure of the responsible flies’ assemblages. Our study aimed to establish a baseline of information on the distribution of non-biting flies in the urban quarters of Douala (Littoral-Cameroon), as a first step in evaluating their status. Ecological surveys were conducted in 2020 during the rainy season (July to November) in four quarters of Douala (populous residential quarter Bilongué, Ndakat market, Ndogbong university campus, and Souboum health center). Flies were captured and stored in vials containing 70° alcohol, identified and the community stucture was characterized. A total of 7,379 flies belonged to four families, five subfamilies, seven genera and 14 species. Calliphoridae was the most represented family (86.2%) followed by Muscidae (13.0%) and Sarcophagidae (0.7%) while Fanniidae was rare (0.1%). These flies were facultative myiasigenic species. We identified three Afrotropical species (21.4%), nine exotic species (64.3%) and two unknown-origin species (14.3%). Flies of high abundances were the Afrotropical-origin fly Chrysomyia putoria Wiedemann, 1830 (Calliphoridae: Chrysomyiinae; 36.8% of the total collection), the Australasian-origin fly Ch. rufifacies Macquart, 1842 (Calliphoridae: Chrysomyiinae; 21.8%), the unknown origin fly Lucilia spp. (Calliphoridae: Calliphorinae; 18.2%), the Holarctic-origin fly Phormia regina Meigen, 1826 (Calliphoridae: Chrysomyiinae; 8.2%), the Paleartic-origin fly Musca (Musca) domestica Linnaeus, 1758 (Muscidae: Muscinae; 7.6%), the Paleartic-origin fly Muscina. pabulorum Fallen, 1817 [=Muscina prolapsa Harris, 1780] (Muscidae: Muscinae; 3.0%) and the Palearctic-origin fly Musca autumnalis De Geer, 1776 (Muscidae: Muscinae; 1.8%). Seven rare species were represented each by less than 1.0% of the overall collection. Overall, species exhibited a positive asociation (Schluter’s ratio: VR = 1.913, Statistic: W = 397.90, df = 14, p < 0.001). Assemblages exhibited high evenness, low species richness and diversity and moderate dominance by a few species, suggesting a moderate interspecies competition influence and/or disturbance by human activities. GM model fitted SAD from Ndogbong, Bilongué, Souboum and the global assemblage, confirming these assemblages are dominated by a few species (pioneer assemblages) and operated according to niche partitioning strategy. LN model fitted the SAD from Ndakat market, suggesting a community where the majority of species showed moderate abundances, close to the model of little disturbed environments. The high occurence of myiasigenic flies necessitates the reaction of the public health control service to reduce myiasis occurrence in the city.

Published in American Journal of Entomology (Volume 6, Issue 3)
DOI 10.11648/j.aje.20220603.11
Page(s) 49-71
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Flies, Biodiversity, Myiasigenic Species, Douala (Cameroon)

References
[1] Abbas, M. N., Sajeel, M. & Kausar, S. (2013). House fly (Musca domestica), a challenging pest: biology, management and control strategies. Elix. Entomol., 64: 19333-19338.
[2] Hinkle, N. C.; Hogsette, J. A. A (2021). Review of Alternative Controls for House Flies. Insects, 12: 1042.
[3] Geden, C. J., Nayduch, D., Scott, J. G., Burgess, E. R., Gerry, A. C., Kaufman, P. E., Thomson, J., Pickens, V. & Machtinger, E. T. (2021). House Fly (Diptera: Muscidae): Biology, Pest Status, Current Management Prospects, and Research Needs. J. Integr. Pest Manag., 12 (1): 39: 1-38.
[4] Awache, I., Farouk, A. A. (2016). Bacteria and fungi associated with houseflies collected from cafeteria and food centres in Sokoto. Fuw. Trends Sci. Technol. J., 1 (1): 123-126.
[5] Ourradi, O., Ahmed, D. S.-A., Sadou, S.-A., Bouzrarf, K. & Belqat, B. (2022). Diversity of flies (Diptera: Brachycera) in breeding farms in the Kabylia region (North-central Algeria), and identification of some myiaseginic species. Biodiversitas, 23 (5): 2276-2284.
[6] Sawar, M. (2015). Biological Control Program to Manage Fruit Fly Pests and Related Tephritids (Diptera: Tephritidae) in Backyard, Landscape and Garden. Int. J. Anim. Biol., 1 (4): 118-123.
[7] Hack, R. J. (2019). Fly control: reducing disease and productivity losses. Int. dairy topics, 18 (2): 13-15.
[8] Meerburg, B. G., Vermeer, H. M. & Kijlstra, A. (2007). Controlling risks of pathogen transmission by flies on organic pig farms A review. Outlook Agric., 36 (3): 193–197.
[9] Radonjić, S., Hrnčić, S. & Perović, T. (2019). Overview of fruit flies important for fruit production on the Montenegro seacoast. Biotechnol. Agron. Soc. Environ., 23 (1): 46-56.
[10] Salazar-Mendoza, P., Peralta-Arago, I., Romero-Rivas, L., Salamanca, J., Rodriguez-Saona, C. (2021) The abundance and diversity of fruit flies and their parasitoids change with elevation in guava orchards in a tropical Andean forest of Peru, independent of seasonality. PLoS ONE, 16 (4): e0250731.
[11] Hinkle, N. C.; Hogsette, J. A. (2021). A Review of Alternative Controls for House Flies. Insects, 12: 1042.
[12] Mitra, B., Parui, P., Banerjee, D., Mukherjee, M. & Bhattachaejee, K. (2005). A Report on Flies (Diptera: Insecta) as Flower Visitors and Pollinators of Kolkata and it’s adjoining areas. Rec. Zool. Surv. India, 105 (3-4): 1-20.
[13] Farkas, R. & Papp, L. (1990). Hydrotaea (Ophyra) species as potential biocontrol agents against Musca domestica (Diptera) in Hungary, Pp. 169-176. In: Rutz, D. A. & Patterson, R. S. (eds.). Biocontrol of Arthropods affecting livestock and poultry. Westview Publisher, Westview Boulder.
[14] Farkas, R., Hogsette, J. A. & Borzsonyi, L. (1998). Development of Hydrotaea aenescens (Wiedemann) and Musca domestica L. (Diptera: Muscidae) in poultry and pig manure of different moisture content. Environ. Entomol., 27: 695-699.
[15] Hogsette, J. A. & Jacobs, R. D. (1999). Failure of Hydrotaea aenescens, a larval predator of the house fly, Musca domestica L., to establish in wet poultry manure on a commercial farm in Florida USA. Med. Vet. Entomol., 13: 349-354.
[16] Simon, P. P., Krüger, R. F. & Ribeiro, P. B. (2011). Influence of diets on the rearing of predatory flies of housefly larvae. Arq. Bras. Med. Vet. Zootec., 63 (6): 1414-1420.
[17] Dieng, H., Satho, T., Mohd Radzi, N. H. S. B., Abang, F., Kassim, N. F. A., Zuharah, W. F., Hashim, N. A., Morales Vargas, R. E. & Morales, N. P. (2021). Flower Mimics Roll Out Multicolored Carpets to Lure and Kill the House Fly. Insects, 12: 1097.
[18] El-Hawagry, M. S. (2018). Catalogue of the Tachinidae of Egypt (Diptera: Oestroidea). Egypt. J. Biol. Pest Control., 28: 46.
[19] Ebrahim, A. M. & Nada, M., S. (2021). First record of Cylindromyia (Conopisoma) rufipes of subfamily Phasiinae (Tachinidae: Diptera) as facultative endoparasitoid of Nezara millierei (Pentatomidae: Hemiptera) in Egypt. Egypt. J. Plant Prot. Res. Inst., 4 (1): 17-28.
[20] Clarke, A. R., Armstrong, K. F., Carmichael, A. E., Milne, J. R., Raghu, S., Roderick, G. K. & Yeates, D. K. (2005). Invasive Phytophagous Pests Arising Through a Recent Tropical Evolutionary Radiation: The Bactrocera dorsalis Complex of Fruit Flies. Annu. Rev. Entomol., 50: 293-319.
[21] Buck, M. (2010). Neriidae, Pp. 815-819. In: Brown, V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E. & Zumbado, M. A. (eds.). Manual of Central American Diptera. NRC Research Press, Ottawa.
[22] Queiroz, C. L. D., De-Souza, C. C., Medeiros, H. F., Overal, W. L., Viana-Junior, A. B. & Carvalho Filho, F. S. (2021). Saprophytic flies in impacted areas of the Belo Monte Dam, Pará, Brazil (Diptera: Mesembrinellidae, Neriidae, Ropalomeridae, and Sarcophagidae): community composition, abundance, and species richness. Biota Neotropica, 21 (1): e20201026.
[23] Salazar-Ortega J. A. & Gomez-Piñerez E. A. L. M. (2012). A check list of necrophagous flies (Diptera: Calyptratae) from urban area in Medellín, Colombia. Rev. Mex. Biodivers., 83: 562-565.
[24] Hanski, I. (1987). Carrion fly community dynamics: patchiness, seasonality and coexistence. Ecol. Entomol., 12: 257-266.
[25] Skevington, J. H. & Dang, P. T. (2002). Exploring the diversity of flies (Diptera). Biodiversity, 3: 1-2.
[26] Brown, B. V., Marshall S. A. & Wood, D. M. (2009). Natural History, Pp. 51-63. In: Brown B., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E. & Zumbado, M. A. (eds.). Manual of Central American Diptera. NCR Research press, Ottawa.
[27] Adrianto, H., Ansori, A. N. M., Bendryman, S. S. & Arwati, H. (2021). Comparison of meat as trap bait for adult fly collection and control. Nat. Vol. Essent. Oil, 8 (6): 641-646.
[28] Zumpt, F. (1965). Myasis in Man and Animals in the Old World: A textbook for Physicians, Veterinarians and Zoologists. Butterworths & Co. Ltd, London, Pp 267.
[29] Hall, M. & Wall, R. (1995). Myiasis of humans and domestic animals. Adv. Parasitol., 35: 257-334.
[30] Tligui, H., Bouazzaoui, A. & Agoumi, A. (2007). Otomyiases humaines dues à Wohlfahrtia magnifica (Diptera: Sarcophagidae): à propos de trois observations au Maroc. Bull. Soc. Pathol. Exot., 100 (1): 61-64.
[31] Francesconia, F. & Lupi, O. (2012). Myiasis. Clin. Microbiol. Rev., 25: 79-105.
[32] Beyhani, Y. E., Yilmazi, H., Taş-Cengizi, Z. & Ayral, A. (2017). A case of aural myiasis caused by Wohlfahrtia magnifica in a child in Turkey. Turk. Hij. Den. Biyol. Derg., 74 (4): 347-350.
[33] Hosni, E. M., Kenawy, M. A., Nasser, M. G., Al-Ashaal, S. A. & Rady, M. H. (2019). A Brief Review of Myiasis with Special Notes on the Blow Flies’ Producing Myiasis (F.: Calliphoridae). Egypt. Acad. J. Biolog. Sci., 11 (2): 25-32.
[34] Hall, M. J., Wall, R. L. & Stevens, J. R. (2016). Traumatic myiasis: a neglected disease in a changing world. Annu. Rev. Entomol., 61: 159-176.
[35] Evenhuis, N. L. & Pape, T. (2022). Systema Dipterorum. In Bánki O., Roskov Y., Döring M., Ower G., Vandepitte L., Hobern D., Remsen D., Schalk P., DeWalt R. E., Keping M., Miller J., Orrell T., Aalbu R., Adlard R., Adriaenssens E. M., Aedo C., Aescht E., Akkari N., Alfenas-Zerbini P. et al. (eds.). Catalogue of Life Checklist (3.6, Feb 2022). www.catalogueoflife.org/data/dataset/1101. Accessed on 13th Jun 2022.
[36] Singh, A. & Singh, Z. (2015). Incidence of myiasis among humans-a review. Parasitol. Res., 114: 3183-3199.
[37] Sherman R. A. (2000). Wound Myiasis in Urban and Suburban United States. Arch. Intern. Med., 160: 2004-2014.
[38] Bhagat, R. C. (2016). Biodiversity of Dipterous flies (Insecta) of myiasis–causing importance in animals and human of Jammu, Kashmir and Ladakh Himalayas (India). J. Glob. Biosci., 5 (7): 4341-4349.
[39] Andriotti, P. A., Souza, C. P., Oliveira, P. C., Melo, R. C., Verocai, G. G. & Fernandes, J. I. (2021). Effectiveness of sarolaner in the clinical management of furuncular myiasis in dogs naturally infested with Dermatobia hominis (Diptera: Cuterebridae). Parasites Vectors, 14: 401.
[40] Máca, J. & Otranto, D. (2014). Drosophilidae feeding on animals and the inherent mystery of their parasitism. Parasites Vectors, 7: 516.
[41] Chigusa, Y., Shinonaga, S., Koyama, Y., Terano, A., Kirinoki, M. & Matsuda, H. (2000). Suspected intestinal myiasis due to Dryomyza formosa in a Japanese schizophrenic patient with symptoms of delusional parasitosis. Med. Vet. Entomol., 14 (4): 453-457.
[42] Huang, H., Zhang, B., Chu, H., Zhang, D. & Li K. (2016). Gasterophilus (Diptera, Gasterophilidae) infestation of equids in the Kalamaili Nature Reserve, China. Parasite, 23: 36.
[43] Martin-Vega, D. (2011). Skipping clues: forensic importance of the family Piophilidae (Diptera). Forensic Sci. Int., 212 (1-3): 1-5.
[44] El-Dib, N. A., El Wahab, W. M. A., Hamdy, D. A. & Ali, M. I. (2017). Case Report of Human Urinary Myiasis Caused by Clogmia albipunctata (Diptera: Psychodidae) with Morphological Description of Larva and Pupa. J. Arthropod Borne Dis., 11 (4): 533-538.
[45] El-Dib, N. A., Ali, M. I., Hamdy, D. A. & El Wahab, W. M. A. (2020). Human intestinal myiasis caused by Clogmia albipunctata larvae (Diptera: Psychodidae): First report in Egypt. J Infect. Public Health, 13 (4): 661-663.
[46] Dutto, M. & Bertero, M. (2010). Traumatic myiasis from Sarcophaga (Bercaea) cruentata Meigen, 1826 (Diptera, Sarcophagidae) in a hospital environment: Reporting of a clinical case following polytrauma. J. Prev. Med. Hyg., 51: 50-2.
[47] Manrique-Saide, P., Rodríguez-Vivas, R. I., Rodríguez, M. Q. & Quiroz-Aparicio R. (1999). A case of bovine pseudomyiasis caused by Hermetia illucens larvae (Diptera: Stratiomyidae). Rev. Biomed., 10 (3): 173-175.
[48] Pérez-Bañón, C., Rojas, C., Vargas, M., Mengual, X.& Rojo, S. (2020). A world review of reported myiases caused by flower flies (Diptera: Syrphidae), including the first case of human myiasis from Palpada scutellaris (Fabricius, 1805). Parasitol. Res., 119 (6): 815-840.
[49] Nagakura, K., Kawauichi-Kato, Y., Tachibana, H., Kaneda, Y., Shinonaga, S. & Kano, R. (1991). Three cases of intestinal myiasis in Japan. J. Infect. Dis., 163: 170-1171.
[50] Scholl, P. J. (1993). Biology and control of cattle grubs. Ann. Rev. Entomol., 39: 53-70.
[51] Caumes E, Carrière, J., Guermonprez, G., Bricaire, F., Danis, M., Gentilini, M. (1995). Dermatoses associated with travel to tropical countries - a prospective study of the diagnosis and management of 269 patients presenting to a tropical disease unit. Clin. Infect. Dis., 20: 542-548.
[52] Gabriel, J. G., Marinho, S. A., Verli, F. D., Krause, J. G., Yurgel, L. S. & Cherubini, K. (2008). Extensive myiasis infestation over a squamous cell carcinoma in the face. Med. Oral Patol. Oral Cir. Bucal, 13 (1): E9-11.
[53] Herbinger, K.-H., Siess, C., Nothdurft, H. D., von Sonnenburg, F. & Löscher, T. (2011). Skin disorders among travellers returning from tropical and non-tropical countries consulting a travel medicine clinic. Trop. Med. Int. Health, 16 (11): 1457-1464.
[54] Korzeniewski, K., Juszczak, D. & Jerzemowski, J. (2015). Skin lesions in returning travellers. Int. Marit. Health, 66 (3): 173-180.
[55] Andreatta, E. & Bonavina, L. (2021). Wound myiasis in Western Europe: prevalence and risk factors in a changing climate scenario. Eur. Surg., 1-6. 10.1007/s10353-021-00730-y.
[56] García-Romera, C. A. & Barrientos, J. A. (2017). Structure of scuttle fly communities (Diptera: Phoridae) in two habitats on a Mediterranean mountain. Eur. J. Entomol., 114: 203-214.
[57] Yaseen, A. T., Mohammed, D. A. & Aziz, E. M. T. (2021). Myiasis, its Types, Causes, and the relationship of some bacterial species to its events / (article review). Mesopotamia J. of Agric., 49 (1): 19-33.
[58] Kuria, S. K., Kingu, H. J. C., Villet, M. H. & Dhaffala, A. (2015). Human myiasis in rural South Africa is under-reported. S. Afr. Med. J., 105 (2): 129-133.
[59] Njila, H. L., David, S. & Ombugadu, A. (2015). Prevalence of biting and non-biting flies in relation to species in the Jos Museum Zoological Garden, North Central Nigeria. Bayero J. Pure Appl. Sci., 8 (1): 149-152.
[60] Omonona, A. O., Abioye, S. A., Odeniran, P. O. & Ademola, I. O. (2021). Catch Composition of Dipteran flies in Old Oyo National Park, Nigeria. Niger. J. Parasitol., 42 (1): 41-48.
[61] Kouam, M. K., Meutchieye F., Nguafack, T. T., Miegoué, E., Tchoumboué, J. & Theodoropoulos, G. (2015). Parasitic fauna of domestic cavies in the western highlands of Cameroon (Central Africa). BMC Vet. Res., 11: 288.
[62] Kouam, M. K., Meutchieye, F., Miegoue, E., NGuafack, T. T., Tchoumboue, J. & Teguia, A. N. D. A. (2017). Prevalence and husbandry-related risk factors of myiasis in domestic cavies in the western highlands of Cameroon. Epidemiol. Infect., 145: 339-346.
[63] Sevidzem, S. L., Mamoudou, A., Acapovi-Yao, G. L., Achiri, M., Tchuinkam, T., Zinga-Koumba. C. R. & Mavoungou, J. F. (2016). First Inventory of Non-Biting and Bitting Muscids of North Cameroon. Int. J. Biol. Sci., 5. 12-20.
[64] Sevidzem, S. L., Mavoungou, J. F., Zinga-Koumba, C. R., Koumba, A. A. & Duvallet, G. (2019). Factors Influencing Seasonal and Daily Dynamics of the Genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), in the Adamawa Plateau, Cameroon. Int. J. Zool., 9. ID 3636943.
[65] Vanhecke, C., NdiKweti Nguimfack, R., Lemarchand, J., Reichart, V. & Le Gall, P. (2015). Facial oedema caused by multifocal myiasis of Cordylobia rodhaini in Yaoundé – Cameroon. Presse Med., 44: 564-566.
[66] Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift, 15 (3): 259-263.
[67] Climate-Data.org (2019). Climat Douala (Cameroun). https://fr.climate-data.org/afrique/cameroun/ littoral/douala-890444/. Assessed on 10th September 2020.
[68] Barraclough, D. A. (1995). An illustrated identification key to the acalyptrate fly families (Diptera: Schizophora) occurring in southern Africa. Ann. Natal Mus., 36: 97-103.
[69] Couri, M. S. (2007). A key to the Afrotropical genera of Muscidae (Diptera). Rev. Bras. Entomol., 24 (1): 175-184.
[70] Buck, M., Woodley, N. E., Borkent, A., Wood, D. M., Pape, T., Vockeroth, J. R., Michelsen, V., & Marshall, S. A. (2009). Key to Diptera families - adults, Pp. 95-144. In: Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (eds.). Manual of Central American Diptera. Volume 1. NRC Research Press, Ottawa.
[71] Rognes, K. & Paterson, H. E. H. (2005). Chrysomya chloropyga (Wiedemann, 1818) and C. putoria (Wiedemann, 1830) (Diptera: Calliphoridae) are two different species. Afr. Entomol., 13 (1): 49-70.
[72] Whitworth, T. (2006). Keys to the genera and species of blow flies (Diptera: Calliphoridae) of America North of Mexico. Proc. Etomol. Soc. Wash., 108 (3): 689-725.
[73] Szpila, K. (2010). Key for the identification of third instars of European blowflies (Diptera: Calliphoridae) of forensic importance, Pp. 43-56. In: Amendt, J., Goff, M. L., Campobasso, C. P. & Grassberger, M. (eds.). Current concepts in forensic entomology. Springer, Dordrecht.
[74] Whitworth, T. (2010). Keys to the genera and species of blow flies (Diptera: Calliphoridae) of the West Indies and description of a new species of Lucilia Robineau-Desvoidy. Zootaxa, 2663: 1-35.
[75] Irish, S., Lindsay, T. & Wyatt, N. (2014). Key to Adults of Afrotropical Species of the Genus Chrysomya Robineau-Desvoidy (Diptera: Calliphoridae). Afr. Entomol., 22 (2), 297-306.
[76] Tantawi, T. & Whitworth, T. (2014). First record of Lucilia bufonivora Moniez, 1876 (Diptera: Calliphoridae) from North America and key to North American species of the L. bufonivora species group. Zootaxa, 3881 (2): 101-124.
[77] Whitworth, T. (2014). A revision of the Neotropical species of Lucilia Robineau-Desvoidy (Diptera: Calliphoridae). Zootaxa, 3810 (1): 001-076.
[78] Akbarzadeh, K., Wallman, J., Šuláková, H. & Szpila, K. (2015). Species identification of Middle Eastern blowflies (Diptera: Calliphoridae) of forensic importance. Parasitol. Res., 114. 10.1007/s00436-015-4329-y.
[79] Grzywacz, A., Hall, M. J. R., Pape, T. & Szpila, K. (2017a). Muscidae (Diptera) of forensic importance - an identification key to third instar larvae of the western Palaearctic region and a catalogue of the muscid carrion community. Int. J. Legal Med., 131: 855-866.
[80] Grzywacz, A., Ogiela, J. & Tofilski, A. (2017b). Identification of Muscidae (Diptera) of medico-legal importance by means of wing measurements. Parasitol. Res., 116: 1495-1504.
[81] Lutz, L., Williams, K. A., Villet, M. H., Ekanem, M. & Szpila, K. (2018). Species identification of adult African blowflies (Diptera: Calliphoridae) of forensic importance. Int. J. Legal Med. 132 (3): 831–842.
[82] Vahedi Nouri, N. & Salehi, A (2020). Myiasis in humans and animals. Anim. Husb. Dairy Vet. Sci, 4: 1-3.
[83] Vairo, K. P., de Mello-Patiu, C. A. & de Carvalho, C. J. B. (2011). Pictorial identification key for species of Sarcophagidae (Diptera) of potential forensic importance in southern Brazil. Rev. Bras. Entomol., 55 (3): 333-347.
[84] Verves, Y. G. (2005). A catalogue of Oriental Calliphoridae (Diptera). Int. J. Dipterol. Res., 16: 233-310.
[85] Sabrosky, C. W. (1999). Family-Group Names in Diptera. An Annotated Catalog, Pp. 3-360. In: Thompson F. C. (ed.). Family-Group Names in Diptera and Bibliography. MYIA Volume 10, Backhuys Publishers, North American Dipterists’ Society, Leiden, Netherlands.
[86] Kosmann, C., de Mello, R. P., Harterreiten-Souza, É. S. & Pujol-Luz, J. R. (2013). A List of Current Valid Blow Fly Names (Diptera: Calliphoridae) in the Americas South of Mexico with Key to the Brazilian Species. EntomoBrasilis, 6 (1): 74-85.
[87] GBIF (2021). Muscina prolapsa (Harris, 1780). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei. Accessed via GBIF.org on 26th May 2022.
[88] Baumgartner, D. & Greenberg, B. (1984). The Genus Chrysomya (Diptera: Calliphoridae) in the New World. J. Med. Entomol., 21: 105-113.
[89] Baumgartner, D. L. (1988). Spread of introduced Chrysomya blowflies (Diptera: Calliphoridae) in the Neotropics with record new to Venezuela. Biotropica, 20: 167-168.
[90] Goff, M. L. (1991). Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the island of Oahu, Hawaii. J. Forensic Sci. 36: 748-753.
[91] Wells, J. D. & Kurahashi, H. (1994). Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) development: Rate, variation and the implications for forensic entomology. Japn. J. Sanitization Zool., 45: 303-309.
[92] Tantawi, T., El-kady, E. & Greenberg, B. (1996). Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J. Med. Entomol., 33 (4): 566-580.
[93] Thompson, F. C., Evenhuis, N. L. & Sabrosky, C. W. (1999). Bibliography of the Family-Group Names of Diptera, Pp. 361-556. In: Thompson F. C. (ed.). Family-Group Names in Diptera and Bibliography. MYIA Volume 10, Backhuys Publishers, North American Dipterists’ Society, Leiden, Netherlands.
[94] Lindsay, S. W., Lindsay, T. C., Duprez, J., Hall, M. J. R., Kwambana, B. A., Jawara, M., Nurudeen, I. U., Sallah, N., Wyatt, N., D’Alessandro, U., Pinder, M. & Antonio, M. (2012). Chrysomya putoria, a Putative Vector of Diarrheal Diseases. PLoS Negl. Trop. Dis., 6 (11): e1895.
[95] Delabarde, T., Keyser C., Tracqui A., Charabidze D. & Ludes, B. (2013). The potential of forensic analysis on human bones found in riverine environment. Forensic Sci. Int., 228: e1-e5.
[96] Benecke, M., Ebehard, J. & Zweihoff, R. (2004). Neglect of the elderly: forensic entomology cases and considerations. Forensic Sci. Int. 146S: S195-S199.
[97] Hussein, S. A. & John, L. C. (2014). Housefly, Musca domestica Linnaeus (Insecta: Diptera: Muscidae). Inst. Food Agric. Sci., 47: 1-7.
[98] Ramaraj, P., Selvakumar, C., Ganesh, A. & Janarthanan, S. (2014). Report on the occurrence of synanthropic derived form of Chrysomya megacephala (Diptera: Calliphoridae) from Royapuram fishing harbour, Chennai, Tamil Nadu. Biodivers. Data J., 2: 1-12.
[99] Sukontason, K. L., Sanit, S., Klong-klaew, T., Tomberlin, J. K & Sukontasonm, K. (2014). Sarcophaga (Liosarcophaga) dux (Diptera: Sarcophagidae): A flesh fly species of medical importance. Biol. Res., 47: 14.
[100] Ommi, D., Hashemian, S. M., Tajbakhsh, E. & Khamesipour, F. (2015). Molecular detection and antimicrobial resistance of Aeromonas from houseflies (Musca domestica) in Iran. Revista MVZ Córdoba., 20 (Suppl): 4929-4936.
[101] Khamesipour, F., Lankarani, K. B., Honarvar, B. & Kwenti T. E. (2018). A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health, 18: 1049.
[102] Trout Fryxell, R. T., Moon, R. D., Boxler, D. J. & Watson, D. W. (2021). Face Fly (Diptera: Muscidae)—Biology, Pest Status, Current Management Prospects, and Research Needs. J. Integr. Pest Manag., 12 (1): 5; 1-18.
[103] ITIS (2022). Muscina levida (Harris, 1788). Integrated Taxonomic Information System. Anailable at www.itis.gov, CC0. Retrieved on June, 19, 2022.
[104] Biawa-Kagmegni, M., Foguieng-Saha, A. D., Guetsop-Ngouadjie, R. P., Tsekane, S. J., Fouelifack-Nintedem, B., Moumite-Mohamed, B., Yethom-Fondjo, J. A., Ngamaleu-Siewe, B., Kenne, E. L., Tuekam-Kowa, P. S., Fantio, R. M., Yomon, A. K., Mbenoun Masse, P. S., Kenne, M. & Fomena, A. (2021). Ants community structure in the urban and the city suburbs areas of Douala (Littoral-Cameroon). J. Insect Biodivers., 025 (2): 033–059.
[105] Moumite Mohamed, B., Tuekam-Kowa, P. S., Guetsop-Ngouadjie, R. P., Tsekane, S. J., Fouelifack-Nintidem, B., Biawa Kagmegni, M., Ngamaleu-Siewe, B., Kenne, E. L., Fantio, R. M., Yomon, A. K., Yetchom-Fondjo, J. A., Foguieng-Saha, A. D., Mbenoun Masse, P. S., Kenne, M. & Fomena, A. (2022). Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon). Am. J. Entomol., 6 (2): 27-42.
[106] Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: Paleontological Statistics software pakage for education and data analysis. Palaeontol. Electron., 4: 9.
[107] Margalef, R. (1978). Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1 (4): 493-509.
[108] Krebs, C. J. (1999). Ecologicam Methodoly. Adison-Wesley Longman, USA, Canada, Pp. 620.
[109] Kikvidze, Z. & Oshawa, M. (2002). Measuring the number of co-dominants in ecological communities. Ecol. Res., 17: 519-525.
[110] Pielou, E. C. (1969). An Introduction to Mathematical Ecology. John-Wiley, New York, Pp. 294.
[111] Ludwig, J. A. & Raynolds, J. F. (1988). Statistical Ecology. John Wiley & Sons, New York, USA, Pp. 337.
[112] Cheng, C. C. (2004). Statistical Approches on Discriminating Spatial Variation in Species Diversity. Bot. Bull. Acad. Sin., 45: 339-346.
[113] Chao, A. & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93 (12): 2533-2547.
[114] Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scand. J. Stat., 11: 210-217.
[115] Chao, A., Chadzon, R. L., Colwel, R. K. & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8: 148-159.
[116] Zipf, G. K. (1965). Human Behaviour and thr Principle of Least Effort: An Introduction to human ecology. 2nd edition, Hafner, New York, USA, Pp. 573.
[117] Iganaki, H. (1967). Mise au point de la loi de Motomura et essai d’une écologie évolutive. Vie Milieu, 18: 153-166.
[118] Daget, J. (1976). Les modèles mathématiques en écologie. Masson, Paris (France), Pp. 172.
[119] Frontier, S. (1987). Applications of Fractal Theory to Ecology, Pp. 335-378. In: Legendre P. & Legendre, L. (eds.). Developments in Numerical Ecology. NATO ASI book series (volume 14). Springer, Berlin, Heidelberg.
[120] Bach, P., Amanieu, M., Lam-Hoai, T. & Lassere, G. (1988). Application du modèle de distribution d’abondance de Mandelbrot à l’estimation des captures dans l’étang de Thau. J. Cons. Int. Explor. Mer., 44: 235-246.
[121] Galante, E. & Cartagena, M. C. (1999). Comparison of Mediterranean dung beetles (Coleoptera: Scarabaeoidea) in cattle and rabbit dung. Environ. Entomol., 28 (3): 420-424.
[122] McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbet, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I. & White, E. P. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10 (10): 995-1015.
[123] Ferreira, F. C. & Petrere-Jr., M. (2008). Comments about some species abundance patterns: classic, neutral, and niche partitioning models. Braz. J. Biol., 68 (4, Suppl.): 1003-1012.
[124] Li, W. (2002). Zipf's Law Everywhere. Glottometrics, 5: 14-21.
[125] Wilson, J. B. (1991). Methods for fitting dominance/diversity curves. J. Veg. Sci., 2 (1): 35-46.
[126] Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19 (2): 101-108.
[127] R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Assessed on 10th Jun 2022.
[128] Sukontason, K. L., Bhoopat, T., Wannasan, A., Sontigun, N., Sanit, S., Amendt, J., Samerjai, C. & Sukontason, K. (2018). Chrysomya chani Kurahashi (Diptera: Calliphoridae), a blow fly species of forensic importance: morphological characters of the third larval instar and a case report from Thailand. Forensic Sci. Res., 3 (1), 83-93.
[129] Whitworth, T. L., Bolek, M. G. & Arias-Robledo, G. (2021). Lucilia bufonivora, Not Lucilia silvarum (Diptera: Calliphoridae), Causes Myiasis in Anurans in North America With Notes About Lucilia elongata and Lucilia thatuna. J. Med. Entomol., 58 (1): 88-92.
[130] Siwel, O. (2018). Phormia regina (Meigen) (Diptera, Calliphoridae) in Britain. Dipterists Digest., 25: 113-118.
[131] Rueda, L. C., Ortega, L. G., Segura, N. A., Acero, V. M. & Bello, F. (2010). Lucilia sericata strain from Colombia: Experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogota, Colombia strain. Biol. Res., 43: 197-203.
[132] Szpila, K., Hall, M. J. R., Pape, T. & Grzywacz, A. (2012). Morphology and identification of first instars of the European and Mediterranean blowflies of forensic importance. Part II. Luciliinae. Med. Vet. Entomol., 27 (4): 349-366.
[133] Arias-Robledo, G., Stark, T., Wall, R. L. & Stevens, J. R. (2019). The toad fly Lucilia bufonivora: its evolutionary status and molecular identification. Med. Vet. Entomol., 33 (1): 131-139.
[134] Cook, D. F., Voss, S. C, Finch., J. T. D., Rader, R. C., Cook, J. M. & Spurr, C. J. (2020). The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. Insects, 11 (6): 341.
[135] Gruner, S. V., Slone, D. H. & Capinera, J. L. (2007). Forensically Important Calliphoridae (Diptera) Associated with Pig Carrion in Rural North-Central Florida. J. Med. Entomol., 44 (3): 509-515.
[136] Andrade-Herrera, K., Núñez-Vázquez, C. & Estrella, E. (2021). Life Cycle of Chrysomya rufifacies (Diptera: Calliphoridae) Under Semi-Controlled Laboratory Conditions. J. Med. Entomol., 58 (6): 2138-2145.
[137] Sukontason, K., Sukontason, K., Narongchai, P., Lertthamnongtham, S., Piangjai, S. & Olson, J. K. (2021). Chrysomya rufifacies (Macquart) as a forensically-important fly species in Thailand: a case report. J. Vector Ecol., 26: 162-164.
[138] Boulesteix, G., Le Dantec, P., Chevalier, B., Dieng, M., Niang, B. & Diatta, B. (2005). Rôle de Musca domestica dans la transmission des bactéries multirésistantes dans un service de réanimation en Afrique subsaharienne. Ann. Fr. Anesth. Reanim., 24 (4): 361-365.
[139] Nassiri, H., Zarrin, M., Veys-Behbahani, R., Faramarzi, S. & Nasiri, A. (2015). Isolation and identification of pathogenic filamentous fungi and yeasts from adult house fly (Diptera: Muscidae) captured from the hospital environments in Alivaz city, Southwestern Iran. J. Med. Entomol., 52 (6): 1351-1356.
[140] Tsagaan, A., Kanuka, I. & Okado, K. (2015). Study of pathogenic bacteria detected in fly samples using universal primer-multiplex PCR. Mong. J. Agric. Sci., 15 (2): 27-32.
[141] Benecke, M. (1998). Six forensic entomology cases: description and commentary. J. Forensic Sci., 43 797-805.
[142] Gunn, A. (2016). The colonisation of remains by the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) (Diptera: Muscidae). Forensic Sci. Int., 266: 349-356.
[143] Grisales, D., Ruiz, M. & Villegas, S. (2010). Insects associated with exposed decomposing bodies in the Colombian Andean Coffee Region. Rev. Bras. Entomol., 54: 637-644.
[144] Badenhorst, R. & Villet, M. H. (2018). The uses of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) in forensic entomology. Forensic Sci. Res., 3. 1-14.
[145] Grzywacz, A., Jarmusz, M. & Szpila, K. (2018). New and noteworthy records of carrion-visiting Fannia Robineau-Desvoidy (Diptera: Fanniidae) of Poland. Entomol. Fenn., 29 (4): 169-174.
[146] Duarte, J. L. P., Krüger, R. F. & Ribeiro, P. B. (2013). Interaction between Musca domestica L. and its predator Muscina stabulans (Fallén) (Diptera, Muscidae): effects of prey density and food source abundance. Rev. Bras. Entomol., 57: 55-58.
[147] Barker, G. M. (2004). Natural ennemies of terestrial Molluscs. CABI International, Wallingford, Oxfordshire, UK, Pp. 644.
[148] Cherix, D., Wyss, C. & Pape, T. (2012). Occurrences of flesh flies (Diptera: Sarcophagidae) on human cadavers in Switzerland, and their importance as forensic indicators. Forensic Sci. Int., 220: 1-3.
[149] Fremdt, H. & Amendt, J. (2014). Species composition of forensically important blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) through space and time. Forensic Sci. Int., 236: 1-9.
[150] Szpila, K., Madra, A, Jarmusz, M., Matuszewski, S. (2015). Flesh flies (Diptera: Sarcophagidae) colonising large carcasses in central Europe. Parasitol. Res., 114: 2341-2348.
[151] Matuszewski, S., Fratczak, K., Konwerski, S., Bajerlein, D., Szpila, K., Jarmusz, M., Szafałowicz, M., Grzywacz, A. & Mądra, A. (2016). Effect of body mass and clothing on carrion entomofauna. Int. J. Legal Med., 130: 221-232.
[152] Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and components of ant invasions. Annu. Rev. Ecol. Syst., 33: 181-233.
[153] Wheeler, Jr. A. G. & Hoebeke, E. R. (2017). Adventive (Non-Native) Insects and the Consequences for Science and Society of Species that Become Invasive, Pp. 641-711. In: Foottit, R. G. & Adler, P. H. (eds.). Insect Biodiversity: Science and Society, Volume I, Second Edition. John Wiley & Sons Ltd, USA.
[154] Murillo, A. C., Hubbard C. B., Hinkle N. C. & Gerry, A. C. (2021). Big Problems With Little House Fly (Diptera: Fanniidae). J. Integr. Pest Manag., 12. 10.1093/jipm/pmaa023.
[155] Fetene, T. & Worku, N. (2008). Public health importance of non-biting cyclorrhaphan flies. Trans. R. Soc. Trop. Med. Hyg., 103. 187-91.
[156] Khoso, F. N., Wong, S. K., Chia, S. L. & Lau, W. H. (2015). Assessment of non-biting synanthropic flies associated with fresh markets. J. Ent. Zool. Stud., 3: 13-20.
[157] Khofar, P. N., Kurahashi, H., Zainal, N. S., Isa, M. S. & Heo, C. C. (2019). Diversity of Coprophilic Diptera associated with buffalo dung in Selangor, Malaysia. J. Wildl. Parks, 34: 63-80.
[158] Courtney, G. W., Pape, T., Skevington, J. H. & Sinclair, B. I. (2017). Biodiversity of Diptera, Pp. 229-278. In: Foottit R. G. & Adler P. H. (eds.). Insect Biodiversity: Science and Society, Volume I, Second Edition. John Wiley & Sons Ltd, USA.
[159] Carpentier, P. & Leprêtre, A. (1999). Robustesse de quelques indices de diversité à l’échantillon. Océanis, 25 (3): 435-455.
[160] Trouillet, J. & Vattier-Bernard, G. (1983). Phlébotomes du Mayombe Congolais (Diptera, Psychodidae). Analyse structurale de trois peuplements. Ann. Parasitol. Hum. Comp., 58 (3): 291-300.
[161] Komonen, A. & Elo, M. (2017). Ecological response hides behind the species abundance distribution: Community response to low-intensity disturbance in managed grasslands. Ecol. Evol., 7: 8558-8566.
[162] Fouelifack-Nintidem, B., Yetchom-Fondjo, J. A., Tsekane, S. J., Ngamaleu-Siewe, B., Kenne, E. L., Biawa-Kagmegni, M., Tuekam-Kowa, P. S., Yomon, A. K., Kentsop-Tsafong, R. M., Dim-Mbianda, A. M. & Kenne, M. (2021). Diversity and abundance of pest insects associated with the Ethiopian eggplant plants Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). Am. J. Entomol., 5 (3): 70-91.
[163] Ngamaleu-Séwé, B., Fouelifack-Nintidem, B., Yetchom-Fondjo, J. A., Moumite Mohamed, B., Tsekane, S. J., Kenne, E. L., Biawa-Kagmegni, M., Tuekam Kowa, P. S., Fantio, R. M., Yomon, A. K. & Kenne, M. (2021). Abundance and diversity of insects associated with Solanum tuberosum L. 1753 (Solanaceae) after insecticide treatments in Balessing (West-Cameroon). Am. J. Entomol., 5 (3): 51-69.
[164] Yetchom-Fondjo, J. A., Kekeunou, S., Kenne, M., Missoup, A. D., & Sheng-Quan, X. (2020). Diversity, abundance and distribution of grasshopper species (Orthoptera: Acrididea) in three different types of vegetation with different levels of anthropogenic disturbances in the Littoral Region of Cameroon. J. Insect Biodivers., 14 (1): 16-33.
[165] Béguinot, J. (2018). Analysing the Role of Environmental Stresses on Species Richness and the Process of Hierarchical Structuring of Species Abundances in Marine Gastropods communities at Suva (Fiji Islands). Int. J. Environ., 8 (3): 200-233.
[166] Kunakh, O. & Kovalenko, D. (2019). Fitting Competing Models of the Population Abundance Distribution: Land Snails from Nikopol Manganese Ore basin Technosols. Ekol. Bratisl., 38 (4): 367–381.
[167] Kenne, E. L., Yetchom-Fondjo, J. A., Moumite-Mohamed, B., Tsekane, S. J., Ngamaleu-Siewe, B., Fouelifack-Nintidem, B., Biawa-Kagmegni, M., Tuekam-Kowa, P. S., Fantio, R. M., Kayoum-Yomon, A., Kentsop-Tsafong, R. M., Dim-Mbianda, A. M. & Kenne, M. (2021). Species composition and diversity of freshwater snails and land snails at the swampy areas and streams edges in the urban zone of Douala, Cameroon. Int. J. Biol. Chem. Sci., 15 (4): 1297-1324.
[168] Errouissi, F., Jay-Robert, P., Lumaret, J.-P. & Piau, A. (2004). Composition and Structure of Dung Beetle (Coleoptera: Aphodiidae, Geotrupidae, Scarabaeidae) Assemblages in Mountain Grasslands of the Southern Alps. Ann. Entomol. Soc. Am., 97 (4): 701-709.
[169] McDonald, R. I., Marcotullio, P. J. & Güneralp, B. (2013). Urbanization and Global Trends in Biodiversity and Ecosystem Services, In Pp. 31-52. In: Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., McDonald, R. I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K. C., Wilkinson, C. (eds.). Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment. A Part of the Cities and Biodiversity Outlook Project. The Netherlands: Springer Open, Springer, Dordrecht, Heidelberg, New York, London.
Cite This Article
  • APA Style

    Romaine Magloire Fantio, Edith Laure Kenne, Andrea Sahara Kenne Toukem, Sedrick Junior Tsekane, Patrick Steve Tuekam-Kowa, et al. (2022). Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon). American Journal of Entomology, 6(3), 49-71. https://doi.org/10.11648/j.aje.20220603.11

    Copy | Download

    ACS Style

    Romaine Magloire Fantio; Edith Laure Kenne; Andrea Sahara Kenne Toukem; Sedrick Junior Tsekane; Patrick Steve Tuekam-Kowa, et al. Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon). Am. J. Entomol. 2022, 6(3), 49-71. doi: 10.11648/j.aje.20220603.11

    Copy | Download

    AMA Style

    Romaine Magloire Fantio, Edith Laure Kenne, Andrea Sahara Kenne Toukem, Sedrick Junior Tsekane, Patrick Steve Tuekam-Kowa, et al. Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon). Am J Entomol. 2022;6(3):49-71. doi: 10.11648/j.aje.20220603.11

    Copy | Download

  • @article{10.11648/j.aje.20220603.11,
      author = {Romaine Magloire Fantio and Edith Laure Kenne and Andrea Sahara Kenne Toukem and Sedrick Junior Tsekane and Patrick Steve Tuekam-Kowa and Abdel Kayoum Yomon and Stevie Ange Tanekeng Tsayem and Martin Kenne},
      title = {Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon)},
      journal = {American Journal of Entomology},
      volume = {6},
      number = {3},
      pages = {49-71},
      doi = {10.11648/j.aje.20220603.11},
      url = {https://doi.org/10.11648/j.aje.20220603.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20220603.11},
      abstract = {In tropical countries some non-biting flies alone or in combination cause myiasis infections. Nowaday, myiasis cases are increasing in urban and rural areas but nothing is known concerning the composition and structure of the responsible flies’ assemblages. Our study aimed to establish a baseline of information on the distribution of non-biting flies in the urban quarters of Douala (Littoral-Cameroon), as a first step in evaluating their status. Ecological surveys were conducted in 2020 during the rainy season (July to November) in four quarters of Douala (populous residential quarter Bilongué, Ndakat market, Ndogbong university campus, and Souboum health center). Flies were captured and stored in vials containing 70° alcohol, identified and the community stucture was characterized. A total of 7,379 flies belonged to four families, five subfamilies, seven genera and 14 species. Calliphoridae was the most represented family (86.2%) followed by Muscidae (13.0%) and Sarcophagidae (0.7%) while Fanniidae was rare (0.1%). These flies were facultative myiasigenic species. We identified three Afrotropical species (21.4%), nine exotic species (64.3%) and two unknown-origin species (14.3%). Flies of high abundances were the Afrotropical-origin fly Chrysomyia putoria Wiedemann, 1830 (Calliphoridae: Chrysomyiinae; 36.8% of the total collection), the Australasian-origin fly Ch. rufifacies Macquart, 1842 (Calliphoridae: Chrysomyiinae; 21.8%), the unknown origin fly Lucilia spp. (Calliphoridae: Calliphorinae; 18.2%), the Holarctic-origin fly Phormia regina Meigen, 1826 (Calliphoridae: Chrysomyiinae; 8.2%), the Paleartic-origin fly Musca (Musca) domestica Linnaeus, 1758 (Muscidae: Muscinae; 7.6%), the Paleartic-origin fly Muscina. pabulorum Fallen, 1817 [=Muscina prolapsa Harris, 1780] (Muscidae: Muscinae; 3.0%) and the Palearctic-origin fly Musca autumnalis De Geer, 1776 (Muscidae: Muscinae; 1.8%). Seven rare species were represented each by less than 1.0% of the overall collection. Overall, species exhibited a positive asociation (Schluter’s ratio: VR = 1.913, Statistic: W = 397.90, df = 14, p < 0.001). Assemblages exhibited high evenness, low species richness and diversity and moderate dominance by a few species, suggesting a moderate interspecies competition influence and/or disturbance by human activities. GM model fitted SAD from Ndogbong, Bilongué, Souboum and the global assemblage, confirming these assemblages are dominated by a few species (pioneer assemblages) and operated according to niche partitioning strategy. LN model fitted the SAD from Ndakat market, suggesting a community where the majority of species showed moderate abundances, close to the model of little disturbed environments. The high occurence of myiasigenic flies necessitates the reaction of the public health control service to reduce myiasis occurrence in the city.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Biodiversity, Abundance of Flies (Diptera: Brachycera) Attracted by Fresh Flesh and Identification of Medical or Forensic Important Species in Douala (Cameroon)
    AU  - Romaine Magloire Fantio
    AU  - Edith Laure Kenne
    AU  - Andrea Sahara Kenne Toukem
    AU  - Sedrick Junior Tsekane
    AU  - Patrick Steve Tuekam-Kowa
    AU  - Abdel Kayoum Yomon
    AU  - Stevie Ange Tanekeng Tsayem
    AU  - Martin Kenne
    Y1  - 2022/07/20
    PY  - 2022
    N1  - https://doi.org/10.11648/j.aje.20220603.11
    DO  - 10.11648/j.aje.20220603.11
    T2  - American Journal of Entomology
    JF  - American Journal of Entomology
    JO  - American Journal of Entomology
    SP  - 49
    EP  - 71
    PB  - Science Publishing Group
    SN  - 2640-0537
    UR  - https://doi.org/10.11648/j.aje.20220603.11
    AB  - In tropical countries some non-biting flies alone or in combination cause myiasis infections. Nowaday, myiasis cases are increasing in urban and rural areas but nothing is known concerning the composition and structure of the responsible flies’ assemblages. Our study aimed to establish a baseline of information on the distribution of non-biting flies in the urban quarters of Douala (Littoral-Cameroon), as a first step in evaluating their status. Ecological surveys were conducted in 2020 during the rainy season (July to November) in four quarters of Douala (populous residential quarter Bilongué, Ndakat market, Ndogbong university campus, and Souboum health center). Flies were captured and stored in vials containing 70° alcohol, identified and the community stucture was characterized. A total of 7,379 flies belonged to four families, five subfamilies, seven genera and 14 species. Calliphoridae was the most represented family (86.2%) followed by Muscidae (13.0%) and Sarcophagidae (0.7%) while Fanniidae was rare (0.1%). These flies were facultative myiasigenic species. We identified three Afrotropical species (21.4%), nine exotic species (64.3%) and two unknown-origin species (14.3%). Flies of high abundances were the Afrotropical-origin fly Chrysomyia putoria Wiedemann, 1830 (Calliphoridae: Chrysomyiinae; 36.8% of the total collection), the Australasian-origin fly Ch. rufifacies Macquart, 1842 (Calliphoridae: Chrysomyiinae; 21.8%), the unknown origin fly Lucilia spp. (Calliphoridae: Calliphorinae; 18.2%), the Holarctic-origin fly Phormia regina Meigen, 1826 (Calliphoridae: Chrysomyiinae; 8.2%), the Paleartic-origin fly Musca (Musca) domestica Linnaeus, 1758 (Muscidae: Muscinae; 7.6%), the Paleartic-origin fly Muscina. pabulorum Fallen, 1817 [=Muscina prolapsa Harris, 1780] (Muscidae: Muscinae; 3.0%) and the Palearctic-origin fly Musca autumnalis De Geer, 1776 (Muscidae: Muscinae; 1.8%). Seven rare species were represented each by less than 1.0% of the overall collection. Overall, species exhibited a positive asociation (Schluter’s ratio: VR = 1.913, Statistic: W = 397.90, df = 14, p < 0.001). Assemblages exhibited high evenness, low species richness and diversity and moderate dominance by a few species, suggesting a moderate interspecies competition influence and/or disturbance by human activities. GM model fitted SAD from Ndogbong, Bilongué, Souboum and the global assemblage, confirming these assemblages are dominated by a few species (pioneer assemblages) and operated according to niche partitioning strategy. LN model fitted the SAD from Ndakat market, suggesting a community where the majority of species showed moderate abundances, close to the model of little disturbed environments. The high occurence of myiasigenic flies necessitates the reaction of the public health control service to reduce myiasis occurrence in the city.
    VL  - 6
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, CameroonDepartment of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon

  • Sections