| Peer-Reviewed

Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon)

Received: 14 July 2021    Accepted: 3 August 2021    Published: 11 August 2021
Views:       Downloads:
Abstract

Solanum tuberosum L. 1753 (Solanaceae) is widely cultivated for its therapeutic and nutritional qualities. In Cameroon, the production is insufficient to meet the demand in the cities and there is no published data on the diversity of associated pest insects. Ecological surveys were conducted from July to September 2020 in 16 plots of five development stages in Balessing (West-Cameroon). Insects active on the plants were captured and identified and the community structure was characterized. The abundance of each species and the part of the plant attacked were recorded. A total of 370 specimens belonged to four orders, 16 families and 21 species. From rearings of 3,200 scarified stems and tubers, two Lepidoptera emerged: the Crambidae Leucinodes orbonalis Guenee, 1854 (18.0%) and the Noctuidae Helicoverpa armigera Hübner, 1808 (26.0%). This gives a total of five orders, 18 families and 23 species associated with the potato plants. We recorded 16 (69.6%) pest species [10 (43.5%) non-native and six (26.1%) native species]. Base on the family composition, Coleoptera and Hemiptera were mostly represented (31.3% respectively) followed by Orthoptera (25.0%) and Diptera (12.4%). Based on the species composition, Hemiptera presented a high number of species (38.1%) followed by Coleoptera (28.6%), Orthoptera (23.8%) and Diptera (9.5%). Based on abundances, Aphididae (60.6%) was the most represented, followed by Gryllotalpidae (7.6%), Tenebrionidae (6.5%), Bibionidae (5.7%), Gryllidae (4.9%), Pentatomidae (4.9%), Cicadellidae (3.5%) and Pyrgomorphidae (2.4%). Eight rare families were recorded (<1% of the total collection respectively) (Acrididae, Chrysomelidae, Elateridae, Lycidae, Scarabeidae, Scutelleridae, Tipulidae and Pyrrhocoridae). Chemicals were not efficient in the study locality, since entomofauna associated with potato plants remained diverse and consisted of alien pests. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.

Published in American Journal of Entomology (Volume 5, Issue 3)
DOI 10.11648/j.aje.20210503.13
Page(s) 51-69
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Solanum tuberosum, pest insects, Biodiversity, Balessing (Cameroon)

References
[1] Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., MacKerron, D. K. L., Taylor, M. A., & Ross, H. (2007). Potato biology and biotechnology (advances and perspectives). Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford, Amsterdam, the Netherlands, Pp. 823.
[2] Eke-Ejiofor, J., & Owuno, F. (2014). The Functional Properties of Starches, Physico-Chemical and Sensory Properties of Salad Cream from Cassava and Potatoes, Int. J. Food Sci., 3 (6): 567-571.
[3] Mahamud, M. A., Chowdhury, M. A. H., Rahim, M. A., & Mohiuddin, K. M. (2015). Mineral nutrient contents of some potato accessions of USA and Bangladesh. J. Bangladesh Agril. Univ., 13 (2): 207-2014.
[4] Muthoni, J., & Kabira, J. N. (2015). Potato Production in the Hot Tropical Areas of Africa: Progress Made in Breeding for Heat Tolerance. J. Agric. Sci., 7 (9): 220-227.
[5] Chauvin, N. D., Mulangu, F., & Porto, G. (2012). Food production and consumption trends in sub-Saharan Africa: Prospects for the transformation of the agricultural sector. UNDP Regional Bureau for Africa, New York, USA, Pp. 76.
[6] Manishimwe, R., Niyitanga, F., Nsabimana, S., Kabayiza, A., & Mutimawurugo, M-C. (2019). Socio-economic and Institutional Factors Influencing the Potato (Solanum tuberosum L.) Production at Smallholder Farmers Level in the Gicumbi District in Rwanda. Tropicultura, 37 (2): 2295-8010.
[7] Basha, K., Ewang, P. N., & Ndemo, Okoyo, E. (2017). Factors Affecting productivity of Smallholder potato Growers in Bore District, Guji Zone, Oromia Regional State, Ethiopia. Developing Country Studies, 7 (9): 18-26.
[8] Ngameni, Tchamadeu, N., Kenko, Nkontcheu, D. B., & Djomo, Nana, E. 2017. Evaluation des facteurs de risques environnementaux liés à la mauvaise utilisation des pesticides par les maraîchers au Cameroun: le cas de Balessing à l’Ouest Cameroun. Afr. Sci., 13 (1): 91-100.
[9] Mengui, K. C., Oh, S., & Lee, S. H. (2019). The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon. Agriculture, 9 (12): 259.
[10] Obodji, A., Aboua, L. R. N., Tano, D. K. C., & Seri-Kouassi, B. P. (2016). Inventory of entomofaune associated with African eggplant (Solanum aethiopicum L.) according to the phonological stages assessment of damages caused by insect pests. J. Adv. Stud. Agric. Biol. Environ. Sci., 3 (2): 2455-0221.
[11] Cook, D., Herbert, A., Akin, D. S., & Reed J. (2011). Biology, Crop Injury, and Management of Thrips (Thysanoptera: Thripidae) Infesting Cotton Seedlings in the United States. J. Integr. Pest Manag., 2 (2): 1-9.
[12] Johnson, F., Gbon, G. A., Boga, J. P., & N’Goran, A. (2019). Incidence des insectes et des nématodes sur la production de l’aubergine Solanum aethiopicum Linné, 1756. Variété Djamba F1 dans la zone périurbaine d’Abidjan, Côte d’Ivoire. Int. J. Multidiscip., 6: 6-11.
[13] Babar, H. C., Asif, H. C., Abdul, G. L., Aslam, B., Imtaiz, A. N., Ammara, R., Fida, H. M., Mehroz, K., Farukh, A., & Zehua, Z. (2019). Insect Biodiversity in Brinjal Agro-Ecosystem. Pak. J. Sci. Ind. Res. A: Phys. Sci., 62B (3): 199-205.
[14] Deffo, V., & Demo P. (2003). Adoption of two new potato varieties in Cameroon: Progress and constraints. Am. J. Potato Res., 80 (4): 263-269.
[15] Latif, M. A., Rahman, M. M., Islam, M. R., & Nuruddin, M. M. (2009). Survey of Arthropod Biodiversity in the Brinjal Field. J. Entomol., 6 (1): 28-34.
[16] Abossolo, S. A., Batha, R. A. S., & Djeugang, A. B. (2015). Identification des risques pluviométriques sur la culture du maïs dans l’arrondissement de Penka-Michel, dans les hautes terres de l’Ouest du Cameroun. Afr. Sci., 11 (2): 136-146.
[17] Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15 (3): 259-263.
[18] Tsalefac, M., Ngoufo, R., Nkwambi, W., Djoumessi, Tatsangue, E., & Lengue Fobissie, B. (2003). Fréquences et quantités des précipitations journalières sur le territoire camerounais. Publ. Assoc. Intern. Climatol., 15: 359-367.
[19] JESBAD (2013). Connaitre Balessing. Jeunesse Estudiantine et Scolaire Balessing de Douala (Cameroun), Pp. 69.
[20] MINADER (2019). Liste des pesticides homologués au Cameroun au 18 Avril 2019. Liste réservée au grand public. Ministère de l’Agriculture et de Développement Rural. Commission Nationale d’Homologation des Produits Phytosanitaires et de Certification des Appareils de Traitement (CNHPPCZT), Yaoundé, Cameroun, Pp. 212.
[21] Sonchieu, J., Ngassoum, M. B., Nantia, Akono, E., & Laxman, P. S. (2018). Pesticide Applications on Some Vegetables Cultivated and Health Implications in Santa, North West-Cameroon. SSRG Int. J. Agric. Env., 4 (2): 39-46.
[22] Konje, C. N., Abdulai, A. N., Tange Achiri, D., Nsobinenyui, D., Tarla, D. N., & Awah Tita, M. (2019). Identification and Management of Pests and Diseases of Garden Crops in Santa, Cameroon. J. Agric. Ecol., 18 (2): 1-9.
[23] Ntonifor, N. N., Nsobinenyui, D. N. S., Fokam, E. B., & Fontem, L. A. (2013). Developing an Integrated Management Approach for the Fruit Fly Dacus punctatifrons on Tomatoes. Am. J. Exp. Agric., 3 (3): 470-481.
[24] Fontem, D. A., Songwalang, A. T., Berinyuy, J. E., & Schippers, R. R. (2003). Impact of fungicide applications for late blight management on huckleberry yields in Cameroon. Afr. Crop Sci. J., 11 (3): 163-170.
[25] Zettler, J. A., Mateer, S. C., Link-Pérez, M. A., Bailey, J., Demars, G., & Ness, T. (2016). To Key or Not to Key: A New Key to Simplify & Improve the Accuracy of Insect Identification. Am. Biol. Teach., 78 (8): 626-633.
[26] Albrecht, A. C. (2017). Illustrated identification guide to the Nordic aphids feeding on Conifers (Pinophyta) (Insecta, Hemiptera, Sternorhyncha, Aphidomorpha). Eur. J. Taxon., 338: 1–160.
[27] Brailovsky, H. (2014). Illustrated key for identification of the species included in the genus Leptoglossus (Hemiptera: Heteroptera: Coreidae: Coreini: Anisoscelini), and descriptions of five new species and new synonyms. Zootaxa, 3794 (3): 143-178.
[28] Dirsh, V. M. (1965). The African genera of Acridoidea. Cambridge University Press for the Anti-Locust Research Center, London, xiii+, Pp. 579.
[29] Lecoq, M. (2010). Taxonomie et systématique des acridiens et principales espèces d’Afrique de l’Ouest. CIRAD, UPR Acridologie, Montpellier, France, Pp. 106.
[30] Freeman, P., & Lane, R. P. (1985). Bibionid and Scatopsid flies. Diptera; Bibionidae and Scatopsidae (Handbooks for the Identification of British Insects 9/7). Royal Entomological Society, London, UK, Pp. 74.
[31] Kevan, D. K., & McHsiung, C. C. (1985). The tropical and southern African species of Pyrgomorpha Audinet-Serville, 1838, other than the P. conica-group (Orthoptera: Acridoidea: Pyrgomorphidae). J. Entomol. Soc. South Africa, 48: 49–102.
[32] Tronquet, M. (2014). Catalogue des Coléoptères de France. Association Roussillonnaise d’Entomologie, Perpignan. Supplément au Tome XXIII-R. A. R. E., Pp. 1052.
[33] Gourmel, C. (2014). Catalogue illustré des principaux insectes ravageurs et auxiliaires des cultures de Guyane. Coopérative BioSavane, Guyane, Pp. 77.
[34] Riley, E., Clark, S., & Seeno, T. (2003). Catalog of leaf beetles of America north of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, excluding Bruchinae). Coleopterists Society. Special publication / Coleopterists Society, no. 1, Pp. 290.
[35] Shimat, V. J., Chong, J.-H., Campbell, B., Kunkel, B., Lauderdale, D., Jones, S., Gill, S., Chen, Y., Schultz, P., Held, D., Hale, F., Dale, A., Vafaie, E., Hudson, W., Gilrein, D., & Del, Pozo-Valdivia, A. (2021). Current Pest Status and Management Practices for Systena frontalis (Coleoptera: Chrysomelidae) in Ornamental Plants in the Eastern United States: An Online Survey. J. Integr. Pest Manag., 12 (1): 17; 1–10.
[36] Mahr, D. L. (2005). Redheaded flea beetle. Wisconsin Cranberry Crop Library: Insect Profiles. Available from https://fruit.webhosting.cals.wisc.edu/wp-content/up-loads/sites/36/2011/05/Redheaded-Flea-Beetle.pdf).
[37] Lauderdale, D. (2017). Red-headed flea beetle biology and management. Winter 2017, Nursery and Landscape Notes 35. Available from https://wilson.ces.ncsu.edu/wp-content/uploads/2017/02/2017-Nursery-Landscape-Notes-RHFB-Article.pdf?fwd=no).
[38] Cloyd, R. A., & Herrick, N. J. (2018). Red headed flea beetle. Kansas State University Agricultural Experiment Station and Cooperative Extension Service, MF3225. (https://www.bookstore.ksre.ksu.edu/pubs/MF3225.pdf).
[39] Jaffe, B., Rink, S., & Guedot, C. (2021). Life History and Damage by Systena frontalis F. (Coleoptera: Chrysomelidae) on Vaccinium macrocarpon Ait. J. Insect Sci., 21 (1): 1-8.
[40] Ritter, C., & Richter, E. (2013). Control methods and monitoring of Agriotes wireworms (Coleoptera: Elateridae). J. Plant Dis. Prot., 120: 4-15.
[41] Jakubowska, M., Bocianowski, J., & Nowosad, K. (2018). Seasonal Fluctuation of Agriotes lineatus, A. obscurus and A. sputator Click Beetles Caught using Pheromone Traps in Poland. Plant Protect. Sci., 54 (2) 2: 118–127.
[42] Parker, W. E., & Howard, J. J. (2001). The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric. For. Entomol., 3: 85-98.
[43] Evans, A. V. (2014). Beetles of Eastern North America. Princeton University Press. Princeton, New Jersey, Pp. 560.
[44] Orozco, J., & Philips, T. K. (2010). Phylogenetic analysis of the American genus Euphoria and related groups based on morphological characters of adults (Coleoptera: Scarabaeidae: Cetoniinae: Cetoniini). Insect Syst. Evol., 41: 39–54.
[45] Benyahia, Y., Soldati, F., Rohi, L., Valladarès, L., Maatouf, N., Courtin, O., El, Antry, S., & Bruste, H. (2015). First survey of darkling beetles (Coleoptera, Tenebrionidae) of Talassemtane National Park, Western Rif, Morocco. Check List., 11 (5): 1-9.
[46] Merkl, O. (2004). On taxonomy, nomenclature, and distribution of some Palaearctic Lagriini, with description of a new species from Taiwan (Coleoptera: Tenebrionidae). Acta Zool. Acad. Sci. Hung., 50 (4): 283–305.
[47] Prisniy, A. V., Merkl, O., Nabozhenko, M. V., & Tsurikov, M. N. (2015). To the knowledge of the genus Lagria Fabricius, 1755 (Coleoptera: Tenebrionidae) of south and east of the Central Russian Upland. Caucasian Entomological Bull., 1 (2): 357–362.
[48] Schmitt, M., & Rönn, T. (2011). Types of geographical distribution of leaf beetles (Chrysomelidae) in Central Europe. Zookeys, 157: 131–158.
[49] Gelhaus, J. K. (2005). The Crane-Fly Tipula (Tipula) oleracea (Diptera: Tipulidae). Reported From Michigan; A New Pest of Turfgrass in Eastern North America. Gt. Lakes Entomol., 38 (1): 97-99.
[50] Jandricic, S. E., Mattson, N. S., Wraight, S., & Sanderson, J. P. (2014). Within-Plant Distribution of Aulacorthum solani (Hemiptera: Aphididae), on Various Greenhouse Plants With Implications for Control. J. Econ. Entomol., 107 (2): 697-707.
[51] Maharani, Y., Hidayat, P., Rauf, A., & Maryana, N. (2018). New records of aphid species Subfamily Aphidinae (Hemiptera: Aphididae) in West Java, Indonesia. Biodiversitas, 19 (2): 510-515.
[52] Villalobos, Muller, W., Perez, Hidalgo, N., Mier, Durante, M. P., & Nieto, Nafría, J. M., (2010). Aphididae (Hemiptera: Sternorrhyncha) from Costa Rica, with new records for Central America. Bol. Asoc. Esp. Entomol., 34 (1-2): 145-182.
[53] Sridhar, J., Kumari, N., Venkateswarlu, V., Bhatnagar, A., Malik, K., Sharma, S., & Chakrabarti, S. (2020). Macrosiphum euphorbiae: A new aphid vector (Aphididae: Hemiptera) of PVY o and PLRV on potato from north western hills of India. J. Entomol. Zool. Stud., 8 (2): 1341-1344.
[54] Srinivasan, R., & Alvarez, J. M. (2011). Specialized Host Utilization of Macrosiphum euphorbiae on a Nonnative Weed Host, Solanum sarrachoides, and Competition With Myzus persicae. Environ. Entomol., 40 (2): 350-356.
[55] Sidauruk, L., & Sipayung, P. (2018). Population of Myzus persicae (Sulzer) and insect diversity on intercropping potatoes with other plants which planting at different time. IOP Conf. Ser. Earth Environ. Sci., 205 (1): 012018.
[56] Chasen, E. M., Dietrich, C., Backus, E. A., & Cullen, E. M. (2014). Potato Leafhopper (Hemiptera: Cicadellidae) Ecology and Integrated Pest Management Focused on Alfalfa. J. Integr. Pest Manag., 5 (1): 1-8.
[57] Couilloud, R. (1989). Hétéroptères déprédateurs du cotonnier en Afrique et à Madagascar (Pyrrhocoridae, Pentatomidae, Coreidae, Alydidae, Rhopalidae, Lygaeidae). Coton et fibres tropicales, 44 (3): 185-226.
[58] Joda, A. O., Ewete, F. K., & Pitan, O. O. R. (2014). Evaluation of Damage Induced by Aspavia armigera Fabricius on Different Rice (Oryza sativa Linn.) Varieties. J. Agric. Sci., 6 (11): 30-36.
[59] Joda, A. O. 2019. Developmental biology of Aspavia armigera (Fabricius, 1775) (Hemiptera: Pentatomidae) on rice (Oryza sativa L.) (Poaceae) and three other hosts in Nigeria. Pol. J. Entomol., 88 (4): 349-361.
[60] Panizzi, A. R. (2008). Southern green stink bug, Nezara viridula (L.) (Hemiptera: Heteroptera: Pentatomidae), Pp. 3471–3471. In J. L. Capinera (ed.), Encyclopedia of Entomology, Springer, Heidelberg.
[61] de, Santana, Souza, E., Lopes, Baldin, E. L., da, Silva, J. P. G. F., & Lourenção, A. L. (2013). Feeding preference of Nezara viridula (Hemiptera: Pentatomidae) and attractiveness of soybean genotypes. Chil. J. Agric. Res., 73 (4): 351-357.
[62] Popov, G. B., FishpooL, L. D. C., & Rowell, C. H. F. (2019). A review of the Acridinae s. str. (Orthoptera: Acridoidea: Acrididae) of eastern Africa with taxonomic changes and description of new taxa. J. Orthoptera Res., 28 (1): 37–105.
[63] Kekeunou, S., Mbeng, D., Ngoute, C., & Wandji, A. (2015). Morphology, development and reproduction of Pyrgomorpha vignaudii (Orthoptera: Pyrgomorphidae). Entomol. Res., 45: 58-70.
[64] Yetchom-Fondjo, J. A., Kekeunou, S., Kenne, M., Missoup, A. D., & Sheng-Quan, X. (2020). Diversity, abundance and distribution of grasshopper species (Orthoptera: Acrididea) in three different types of vegetation with different levels of anthropogenic disturbances in the Littoral Region of Cameroon. J. Insect Biodivers., 14 (1): 16-33.
[65] Panagiotopoulou, H., Baca, M., Baca, K., Sienkiewicz, P., Ślipinśki, P., & Żmihorski, M. (2016). Genetic identification of a non-native species introgression into wild population of the field cricket Gryllus campestris (Orthoptera: Gryllidae) in Central Europe. Eur. J. Entomol., 113: 446-455.
[66] Kazemi, M. H., Jafari, S., Lotfalizadeh, H., & Mashhadi-Jafarloo, M. (2013). Wing dimorphism of European mole cricket Gryllotalpa gryllotalpa (L.) (Orthoptera: Gryllotalpidae) in the north-west of Iran. North West J. Zool., 9 (1): 45-50.
[67] Broza, M., Blondheim, S., & Nevo, E. (2002). New species of mole crickets of the Gryllotalpa gryllotalpa group (Orthoptera: Gryllotalpidae) from Israel, based on morphology, song recordings, chromosomes and cuticular hydrocarbons, with comments on the distribution of the group in Europe and the Mediterranean region. Syst. Entomol., 23 (2): 125-35.
[68] Mally, R., Korycinska, A., Agassiz, D. J. L., Hall, J., Hodgetts, J., & Nuss, M. (2015). Discovery of an unknown diversity of Leucinodes species damaging Solanaceae fruits in sub-Saharan Africa and moving in trade (Insecta, Lepidoptera, Pyraloidea). Zookeys, 472: 117-162.
[69] Brailovsky, H., & van, der, Heyden, T. (2019). New distributional notes and key to the known species of Leptoglossus Guérin-Méneville from Guatemala (Heteroptera: Coreidae: Coreinae: Anisoscelini). Rev. Chil. Entomol., 45 (1): 175-180.
[70] Sharif, T., Irum, W., Asad, B., Ayesha, S., Maryam, A., & Sohail, A. (2020). Taxonomic studies of family Pentatomidae (Hemiptera) four genera from district Faisalabad Punjab Pakistan with taxonomic keys. J. Entomol. Zool. Stud., 8 (1): 1338-1344.
[71] Dzokou, V. J., Lontchi, Fofe, N., Kamgaing, Kouam, B. H., Yaouba, A., & Tamesse, J. L. (2021). Fauna Pests Infesting Pepper (Piper nigrum L.) in Penja-Cameroon. Am. J. Entomol., 5 (2): 32-38.
[72] Rice, W. (1989). Analyzing tables of statistical tests. Evolution 43 (1): 223-225.
[73] Schluter, D. A. (1984). A variance test for detecting species associations, with some example applications. Ecology, 65 (3): 998-1005.
[74] Chao, A., Chadzon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8: 148-159.
[75] Biawa-Kagmegni, M., Foguieng-Saha, A. D., Guetsop-Ngouadjie, R. P., Tsekane, S. J., Fouelifack-Nintidem B. Moumite Mohamed, B., Yetchom-Fondjo, J. A., Ngamaleu-Siewe, B., Kenne, E. L., Tuekam Kowa P. S., Fantio R. M., Yomon, A. K., Mbenoun Masse, P. S., Kenne, M., & Fomena, A. (2021). Ants community structure in the urban and the city suburbs areas of Douala (Littoral-Cameroon). J. Insect Biodivers., 025 (2): 033–059.
[76] McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbet, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., & White, E. P. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10 (10): 995-1015.
[77] Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19 (2): 101-108.
[78] R Core Team, (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/.
[79] Wilson, J. B. (1991). Methods for fitting dominance/diversity curves. J. Veg. Sci., 2 (1): 35-46.
[80] Iganaki, H. (1967). Mise au point de la loi de Motomura et essai d’une écologie ́évolutive. Vie et Milieu, 18: 153-166.
[81] Li, W. (2002). Zipf's Law Everywhere. Glottometrics, 5: 14-21.
[82] Zipf, G. K. (1965). Human Behaivour and the Principle of Least Effort: An introduction to human ecology. (2nd edition), Hafner, New York, NY, USA, Pp. 573.
[83] Le, D.-H., Pham, C.-K., Nguyen, T. T. T., & Bui, T. T. (2012). Parameter extraction and optimization using Levenberg-Marquardt algorithm, Pp. 434–437. In Proceedings of 2012 IEEE conference. Fourth International Conference on Communications and Electronics (ICCE), Hanoi University of Science and Technology, Hanoi (Vietnam).
[84] Murthy, Z. V. P. 2014. Nonlinear Regression: Levenberg-Marquardt Method, Pp. 1-3. In E. Drioli, & L. Giorno, (ed.s), Encyclopedia of Membranes. Springer-Verlag, Berlin, Heidelberg.
[85] Frontier, S. (1987). Applications of Fractal Theory to Ecology, Pp. 335–378. In P. Legendre, & L. Legendre (eds.). Developments in Numerical Ecology. NATO ASI Series book series (volume 14). Springer, Berlin, Heidelberg.
[86] Bach, P., Amanieu, M., Lam-Hoai, T., & Lasserre, G. (1988). Application du modèle de distribution d'abondance de Mandelbrot a l'estimation des captures dans l'étang de Thau. J. Cons. Int. Explor. Mer, 44: 235-246.
[87] Dias, R. K. S., & Kosgamage, K. R. K. A. (2012). Occurrence and Species Diversity of Ground-Dwelling Worker Ants (Family: Formicidae) in Selected Lands in the Dry Zone of Sri Lanka. J. Sci. Univ. Kelaniya, 7: 55-72.
[88] Uno, S., Cotton, J., & Philpott, S. M. (2010). Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst., 13: 425–441.
[89] Solar, R. R. C., Barlow, J., Andersen, A. N., Schoereder, J. H., Berenguer, E., Ferreira, J. N., & Gardner, T. A. (2016). Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biol. Conserv., 197: 98–107.
[90] Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and components of ant invasions. Annu. Rev. Ecol. Syst., 33: 181-233.
[91] Adja, N. A., Danho, M., Alabi, T. A. F., Gnago, A. J., Zimmer, J. Y., Francis, F., Kouassi, P., Baudoin, J. P., & Zoro Bi, I. A. (2014). Entomofauna associated with African oleaginous cucurbits (Lagenaria siceraria Molina (Standl. 1930) and Citrullus lanatus Thumb (Matsum & Nakai 1916)) and impact of pests on production. Int. J. Entomol., 50 (3-4): 301-310.
[92] Ofori, E. S. K., Afful, N., Quartey, E. K., Osae, M., & Amoatey, H. M. (2015). Preliminary Ecological Studies of Insect Species Associated with Different Accessions of Eggplant (Solanum melongena L.) in Southern Ghana. J. Agric. Ecol., 4 (4): 199-210.
[93] Saguez, J., Latraverse, A., De, Almeida, J., van, Herk, W. G, Vernon, R. S., Légaré, J.-P., Moisan-de, Serre, J., Fréchette, M. &, Labrie, G. (2017). Wireworm in Quebec field crops: specific community composition in North America. Environ. Entomol., 46 (4): 814-825.
[94] Kenne, M., Djiéto-Lordon, C., Orivel, J., Mony, R., Fabre, A., & Dejean, A. (2003). Influence of Insecticide Treatments on Ant-Hemiptera Associations in Tropical Plantations. J. Econ. Entomol., 96 (2): 251-258.
[95] Munyaneza, J. E., Jensen, A. S., Hamm, P. B., & Upton, J. E. (2008). Seasonal occurrence and abundance of beet leafhopper in the potato growing region of Washington and Oregon Columbia Basin and Yakima Valley. Am. J. Potato Res., 85: 77–84.
[96] Nasruddin, A., Fattah, A., Baco, M. S., & Said, A. E. (2014). Potential damages, seasonal abundance and distribution of Empoasca terminalis Distant (Homoptera: Cicadellidae) on soybean in South Sulawesi. Indones. J. Entomol., 11 (2): 93–102.
[97] Labrie, G., & De, Almeida J. (2011). La tipule des prairies dans les grandes cultures au Québec. Antennae, 18 (2): 7-9.
[98] Talekar, N. S., Open’a, R. T., & Hanson, P. (2006). Helicoverpa armigera management: a review of AVRDC’s research on host plant resistance in tomato. Crop Prot., 25 (5): 461-467.
[99] Bindu, S. P., Pramanik, A., & Padhi, G. K. (2015). Studies on Biology and physical measurements of shoot and fruit borer (Leucinodes orbonalis Guenee) of Brinjal in West Bengal, India. Glob. J. Biol. Agric. Health Sci., 4 (1): 215-219.
[100] Shirale, D., Patil, M., & Parimi, S. (2017). Insecticide resistance in field populations of Leucinodes orbonalis (Lepidoptera: Crambidae) in India. Can. Entomol., 149 (3): 1-9.
[101] Naseem, R., Naureen, R., Elmo, K., Waqar, M., & Shahla, N. (2020). Abundance and diversity of foliage insects among different Olericulture Crops. GSC Biol. Pharm. Sci., 10 (2): 062-069.
[102] Srinivasan, R. (2009). Insect and mite pests on eggplant: a field guide for indentification and management. AVRDC - The World Vegetable Center, Shanhua, Taiwan, Pp. 64.
[103] Galante, E., & Cartagena, M. C. (1999). Comparison of Mediterranean dung beetles (Coleoptera: Scarabaeoidea) in cattle and rabbit dung. Environmental Entomology 28 (3): 420-424.
[104] Komonen, A., & Elo, M. (2017). Ecological response hides behind the species abundance distribution: Community response to low-intensity disturbance in managed grasslands. Ecol. Evol., 7 (20): 8558–8566.
[105] Lowe, S., Browne, M., Boudjelas, S., & De, Poorter, M. (2000). 100 of theWorld’s Worst Invasive Alien Species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Hollands Printing Ltd, New Zealand, Pp. 12.
[106] Ferreira, F. C., & Petrere-Jr., M. (2008). Comments about some species abundance patterns: classic, neutral, and niche partitioning models. Braz. J. Biol., 68 (4, Suppl.): 1003-1012.
[107] McGlynn, T. P. (1999). The worldwide transfer of ants: geographical distribution and ecological invasions. J. Biogeogr., 26 (3): 535-548.
[108] Shea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends Ecol. Evol., 17 (4): 170-176.
[109] Babu, S. R., & Subrahmanyam, B. (2010). Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth and development of Helicoverpa armigera (Hübner). Pestic. Biochem. Physiol., 98 (3): 349-358.
Cite This Article
  • APA Style

    Babell Ngamaleu-Siewe, Boris Fouelifack-Nintidem, Jeanne Agrippine Yetchom-Fondjo, Basile Moumite Mohamed, Junior Tsekane Sedick, et al. (2021). Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon). American Journal of Entomology, 5(3), 51-69. https://doi.org/10.11648/j.aje.20210503.13

    Copy | Download

    ACS Style

    Babell Ngamaleu-Siewe; Boris Fouelifack-Nintidem; Jeanne Agrippine Yetchom-Fondjo; Basile Moumite Mohamed; Junior Tsekane Sedick, et al. Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon). Am. J. Entomol. 2021, 5(3), 51-69. doi: 10.11648/j.aje.20210503.13

    Copy | Download

    AMA Style

    Babell Ngamaleu-Siewe, Boris Fouelifack-Nintidem, Jeanne Agrippine Yetchom-Fondjo, Basile Moumite Mohamed, Junior Tsekane Sedick, et al. Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon). Am J Entomol. 2021;5(3):51-69. doi: 10.11648/j.aje.20210503.13

    Copy | Download

  • @article{10.11648/j.aje.20210503.13,
      author = {Babell Ngamaleu-Siewe and Boris Fouelifack-Nintidem and Jeanne Agrippine Yetchom-Fondjo and Basile Moumite Mohamed and Junior Tsekane Sedick and Edith Laure Kenne and Biawa-Miric Kagmegni and Patrick Steve Tuekam Kowa and Romaine Magloire Fantio and Abdel Kayoum Yomon and Martin Kenne},
      title = {Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon)},
      journal = {American Journal of Entomology},
      volume = {5},
      number = {3},
      pages = {51-69},
      doi = {10.11648/j.aje.20210503.13},
      url = {https://doi.org/10.11648/j.aje.20210503.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20210503.13},
      abstract = {Solanum tuberosum L. 1753 (Solanaceae) is widely cultivated for its therapeutic and nutritional qualities. In Cameroon, the production is insufficient to meet the demand in the cities and there is no published data on the diversity of associated pest insects. Ecological surveys were conducted from July to September 2020 in 16 plots of five development stages in Balessing (West-Cameroon). Insects active on the plants were captured and identified and the community structure was characterized. The abundance of each species and the part of the plant attacked were recorded. A total of 370 specimens belonged to four orders, 16 families and 21 species. From rearings of 3,200 scarified stems and tubers, two Lepidoptera emerged: the Crambidae Leucinodes orbonalis Guenee, 1854 (18.0%) and the Noctuidae Helicoverpa armigera Hübner, 1808 (26.0%). This gives a total of five orders, 18 families and 23 species associated with the potato plants. We recorded 16 (69.6%) pest species [10 (43.5%) non-native and six (26.1%) native species]. Base on the family composition, Coleoptera and Hemiptera were mostly represented (31.3% respectively) followed by Orthoptera (25.0%) and Diptera (12.4%). Based on the species composition, Hemiptera presented a high number of species (38.1%) followed by Coleoptera (28.6%), Orthoptera (23.8%) and Diptera (9.5%). Based on abundances, Aphididae (60.6%) was the most represented, followed by Gryllotalpidae (7.6%), Tenebrionidae (6.5%), Bibionidae (5.7%), Gryllidae (4.9%), Pentatomidae (4.9%), Cicadellidae (3.5%) and Pyrgomorphidae (2.4%). Eight rare families were recorded (<1% of the total collection respectively) (Acrididae, Chrysomelidae, Elateridae, Lycidae, Scarabeidae, Scutelleridae, Tipulidae and Pyrrhocoridae). Chemicals were not efficient in the study locality, since entomofauna associated with potato plants remained diverse and consisted of alien pests. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon)
    AU  - Babell Ngamaleu-Siewe
    AU  - Boris Fouelifack-Nintidem
    AU  - Jeanne Agrippine Yetchom-Fondjo
    AU  - Basile Moumite Mohamed
    AU  - Junior Tsekane Sedick
    AU  - Edith Laure Kenne
    AU  - Biawa-Miric Kagmegni
    AU  - Patrick Steve Tuekam Kowa
    AU  - Romaine Magloire Fantio
    AU  - Abdel Kayoum Yomon
    AU  - Martin Kenne
    Y1  - 2021/08/11
    PY  - 2021
    N1  - https://doi.org/10.11648/j.aje.20210503.13
    DO  - 10.11648/j.aje.20210503.13
    T2  - American Journal of Entomology
    JF  - American Journal of Entomology
    JO  - American Journal of Entomology
    SP  - 51
    EP  - 69
    PB  - Science Publishing Group
    SN  - 2640-0537
    UR  - https://doi.org/10.11648/j.aje.20210503.13
    AB  - Solanum tuberosum L. 1753 (Solanaceae) is widely cultivated for its therapeutic and nutritional qualities. In Cameroon, the production is insufficient to meet the demand in the cities and there is no published data on the diversity of associated pest insects. Ecological surveys were conducted from July to September 2020 in 16 plots of five development stages in Balessing (West-Cameroon). Insects active on the plants were captured and identified and the community structure was characterized. The abundance of each species and the part of the plant attacked were recorded. A total of 370 specimens belonged to four orders, 16 families and 21 species. From rearings of 3,200 scarified stems and tubers, two Lepidoptera emerged: the Crambidae Leucinodes orbonalis Guenee, 1854 (18.0%) and the Noctuidae Helicoverpa armigera Hübner, 1808 (26.0%). This gives a total of five orders, 18 families and 23 species associated with the potato plants. We recorded 16 (69.6%) pest species [10 (43.5%) non-native and six (26.1%) native species]. Base on the family composition, Coleoptera and Hemiptera were mostly represented (31.3% respectively) followed by Orthoptera (25.0%) and Diptera (12.4%). Based on the species composition, Hemiptera presented a high number of species (38.1%) followed by Coleoptera (28.6%), Orthoptera (23.8%) and Diptera (9.5%). Based on abundances, Aphididae (60.6%) was the most represented, followed by Gryllotalpidae (7.6%), Tenebrionidae (6.5%), Bibionidae (5.7%), Gryllidae (4.9%), Pentatomidae (4.9%), Cicadellidae (3.5%) and Pyrgomorphidae (2.4%). Eight rare families were recorded (<1% of the total collection respectively) (Acrididae, Chrysomelidae, Elateridae, Lycidae, Scarabeidae, Scutelleridae, Tipulidae and Pyrrhocoridae). Chemicals were not efficient in the study locality, since entomofauna associated with potato plants remained diverse and consisted of alien pests. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Sections