Nanoscience and Nanometrology

| Peer-Reviewed |

Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory

Received: Jun. 09, 2017    Accepted: Jul. 11, 2017    Published: Aug. 03, 2017
Views:       Downloads:

Share This Article

Abstract

Organometallic compounds composed of metal atoms and organic molecular rings have unique physical and chemical properties, and show attractive applications in optoelectronic devices, catalysts, biosensors and so on. In this paper, the structure and photoelectron spectra of a series of organometallic compounds Ln(C8H8)2¯ (Ln = Ce, Eu, Ho, Nd and Yb) have been systematically studied by using two functional B3LYP and BPW91 based on the density functional theory. The results show organometallic complexes Ln(C8H8)2¯ are typical "sandwich" structure. Both Eu(C8H8)2¯ and Ho(C8H8)2¯ have perfect "sandwich" structure with high D8h point symmetry. Nd(C8H8)2¯ and Yb(C8H8)2¯ possess D4h point symmetry. Ce(C8H8)2¯ is a distorted "sandwich" structure with C1 point symmetry. Generalized koopmans’ theorem is applied to simulate the photoelectron spectra, and the results are in agreement with the experiments.

DOI 10.11648/j.nsnm.20170302.11
Published in Nanoscience and Nanometrology ( Volume 3, Issue 2, December 2017 )
Page(s) 40-45
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Density Functional Theory, Photoelectron Spectrum, Lanthanide, Sandwich Structure

References
[1] J. K. Gibson, "Gas-phase organolanthanide(Ln) chemistry:formation of Ln+-{benzene} and Ln+-{benzene} complexes by reactions of laser-ablated Ln+ with cyclic hydrocarbons"J. Phys. Chem. Vol. 100,pp. 15688-15694,1996.
[2] T.Kurikawa, Y. Negishi, F. Hayakawa, S. Nagao, K. Miyajima, A. Nakajima and K. Kaya, "Multiple-decker sandwich complexes of lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln=Ce, Nd, Eu, Ho, and Yb); localized ionic bonding structure"J. Am. Chem. Soc. Vol. 120, pp. 11766-11772,1998.
[3] K. Béchamp, M. Levesque, H. Joly and L. Manceron, "A combined electron paramagnetic resonance and fourier transform infrared study of the Co(C6H6)(1,2) complexes isolated in neat benzene or in cryogenic matrixes,"J. Phys. Chem. A vol.110, pp. 6023-6031,2006.
[4] P. Chaquin, D. Costa, C. Lepetit and M. Che, "Structure and bonding in a series of neutral and cationic transition metal-benzene η6 complexes [M(η6-C6H6)]n+ (M=Ti, V, Cr, Fe, Co, Ni, and Cu). Correlation of charge transfer with the bathochromic shift of the E1 ring vibration"J. Phys. Chem. A vol. 105, pp. 4541-4545, 2001.
[5] M. A. Polovkova, A. G. Martynov, K. P. Birin, S. E. Nefedov, Y. G. Gorbunova and A. Y. Tsivadze, "Determination of the structural parameters of heteronuclear(phthalocyaninato)bis(crownphthalocyaninato) lanthanide (III) triple-deckers in solution by simultaneous analysis of NMR and single-crystal X-ray data"Inorg. Chem. vol. 55, pp. 9258-9269, 2016.
[6] E. A. Ziemann, S. Baljak, S. Steffens, T. Stein, N. V. Steerteghem, I. Asselberghs, K. Clays and J. Heck, "Stille cross-coupling reaction with cationic [(η5-Cp)(η6-C6H6-xIx)Ru]+ complexes as key for ethynyl-bridged homo- and heteronuclear sandwich compounds" Organometallics vol. 34, pp. 1692-1700, 2015.
[7] M. D. Walter, C. J. Burns, P. T. Matsunaga, M. E. Smith and R. A. Andersen, "Synthesis and physical properties of pentamethylmanganocene, (C5Me5)Mn(C5H5), and the inclusion compounds [(C5Me5)2Yb]2[(C5H5)2M] (where M =V, Cr, Fe, Co)" Organometallics vol. 35, pp.3488-3497, 2016.
[8] J. Rausch, P. Liebing, V. Lorenz, L. Hilfert, S. Busse, C. Maichle-MÖssmer and F. Edelmann, "Scandium-mediated formation of a bis(tetrahydropentalene)" Angew. Chem. Int. Edit. vol. 129, pp. 7344-7347, 2017.
[9] I. Valencia, A. Guevara-Garcia and M. Castro,"Bonding and magnetism of Fe6-(C6H6)m, m=1,2" J. Phys. Chem. A vol. 113, pp. 6222-6238,2009.
[10] H. F. Li, X. Y. Kuang and H. Q. Wang, "Probing the structural and magnetic properties of transition metal-benzene anion complexes"Dalton Trans. Vol. 40, pp. 4578-4589, 2011.
[11] G. Hong, F. Schautz and M. Dolg, "Ab initio study of metal-ring bonding in the bis(η6-benzene) lanthanide and –actinide complexes M(C6H6)2 (M=La, Ce, Nd, Gd, Tb, Lu, Th, U)"J. Am. Chem. Soc. Vol. 121, pp. 1502-1512, 1999.
[12] R. Saha, S. Pan and P. K. Chattaraj, "NgMCp+: Noble gas bound half-sandwich complexes (Ng= He-Rn, M=Be-Ba, and Cp5-C5H5)" J. Phys. Chem. A vol.121, pp. 3526-3539, 2017.
[13] I. Infante, J. Raab, J. T. Lyon, B. Liang, L. Andrews and L. Gagliardi, "Experimental and theoretical evidence for U(C6H6) and Th(C6H6) complexes"J. Phys. Chem. A vol. 111, pp. 11996-12000, 2007.
[14] J. R. Kummer and J. M. Brom, "Geometry and electronic structure of titanabenzene and its valence isomers" J. Phys. Chem. A vol. 120, pp. 10007-10017, 2016.
[15] X. J. Yao, X. Y. Zhang and J. L. Wang, "The bonding characteristics and electronic and magnetic properties of organometallic sandwich clusters and nanowires" Int. J. Quantum chem. vol. 115, PP. 607-617, 2015.
[16] A. F. R. Kilpatrick, J. C. Green and F. G. N. Cloke, "Bonding in complexes of bis(pentalene)dititanium, Ti2(C8H6)2"Organometallics vol. 34, pp. 4830-4843, 2015.
[17] R. S. Roy, A. Mondal and P. K. Nandi, "First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals" J. Mol. Model. vol. 23, pp. 93(1-8),2017.
[18] T. D. Jaeger, D. V. Heijnsbergen, S. J. Klippenstein, G. V. Helden, G. Meijer and M. A. Duncan, "Vibrational spectroscopy and density functional theory of transition-metal ion-benzene and dibenzene complexes in the gas phase"J. Am. Chem. Soc. Vol. 126,pp. 10981-10991, 2004.
[19] M. A. Duncan, "Structures, energetics and spectroscopy of gas phase transition metal ion-Benzene complexes"Int. J. Mass. Spectrom. Vol. 272, pp. 99-118, 2008.
[20] K. Miyajima, S. Yabushita, M. B. Knickelbein and A. Nakajima, "Stern-gerlach experiments of one-dimensional metal-benzene sandwich cluster: Mn(C6H6)m (M=Al, Sc, Ti, and V)"J. Am. Chem. Soc. vol. 129, pp. 8473-8480, 2007.
[21] W. J. Zheng, S. N. Eustis, X. Li, J. M. Nilles, O.C. Thomas and K. H. Bowen Jr."Photoelectron spectroscopic study of iron-benzene cluster anions"Chem. Phys. Lett. 462, 35-39 2008.
[22] S. F. Parker, "Reactions of iron atoms with benzene"J. Phys. Chem. A, vol. 114, pp. 1657-1664, 2010.
[23] P. Weis, P. R. Kemper and M. T. Bowers, "Structure and energetic of Vn(C6H6)m+ clusters: Evidence for a quintuple-decker sandwich"J. Phys. Chem. A vol. 101,pp. 8207-8213, 1997.
[24] X. Y. Zhang and J. L. Wang, "Structural, electronic, and magnetic properties of Con(benzene)m"J. Phys. Chem. A, vol. 112, pp. 296-304, 2008.
[25] V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow and I. Mertig, "Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet"Phys. Rev. Lett. Vol. 97, pp. 097201, 2006.
[26] A. K. Kandalam, P. Jena, X. Li, S. N. Eustis and K. H. Bowen, "Photoelectron spectroscopy and theoretical studies of [Com(pyrene)n]- (m=1,2 and n=1,2) complexes"J. Chem. Phys. Vol. 129, pp. 134308(1-11), 2008.
[27] A. K. Kandalam, B. Kiran, P. Jena, X. Li, A. Grubisic and K. H. Bowen, "Ground state structures ans photoelectron spectroscopy of [Com(coronene)]- complexes"J. Chem. Phys. Vol. 126, pp. 084306(1-9), 2007.
[28] J. A. Bogart, A. J. Lewis, M. A. Boreen, H. B. Lee, S. A. Medling, P. J. Carroll, C. H. Booth and E. J. Schelter, "A lignd field series for the 4f-block from experimental and DFT computed Ce(IV/III) electrochemical potentials" Inorg. Chem. Vol. 54, pp. 2830-2837, 2015.
[29] P. S. Koroteev, Zh. V. Dobrokhotova, A. B. Ilyukhin, N. N. Efimov and V. M. Novotortsev, "Synthesis, structure, and magnetic properties of lanthanide ferrocenoylacetonates with nitrate and 2,2′-bipyridine ligands" J. Coord. Chem. vol. 69, pp. 2723-2735, 2016.
[30] A. V. Gavrikov, P. S. Koroteev, Zh. V. Dobrokhotova, A. B. Ilyukhin, N. N. Efimov, D. I. Kirdyankin, M. A. Bykov, M. A. Ryumin and V. M. Novotortsev "Novel heterometallic polymeric lanthanide acetylacetonates with bridging cymantrenecarboxy-late groups-synthesis, magnetism and thermolysis"Polyhedron vol. 102, pp. 48-59, 2015.
[31] O. A. Blackburn, R. M. Edkins, S. Faulkner, A. M. Kenwright, D. Parker, N. J. Rogers and S. Shuvaev "Electromagnetic susceptibility anisotropy and its importance for paramagnetic NMR and optical spectroscopy in lanthanide coordination chemistry" Dalton Trans. Vol. 45, pp. 6782-6800, 2016.
[32] J. Miyazaki, N. Sudo and Y. Yamaka, "Infrared spectroscopic and density functional theoretical study of tris(cyclopentadienyl)ytterbium (YbCp3) and acetone adduct molecules of YbCp3 in low-temperature matrices"J. Mol. Spectrosc. vol. 314, pp. 26-34, 2015.
[33] J. F. Corbey, D. H. Woen, C. T. Palumbo, M. E. Fieser, J. W. Ziller, F. Furche and W. J. Evans, "Ligand effects in the synthesis of Ln2+ complexes by reduction of tris(cyclopentadienyl) precursors including C-H bond activation of an indenyl anion" Organometallics vol. 34, pp. 3909-3921, 2015.
[34] K. Miyajima, M. B. Knickelbein and A. Nakajima, "Magnetic properties of lanthanide organometallic sandwich complexes produced in a molecular beam"Polyhedron vol. 24, pp. 2341-2345, 2005.
[35] J. Suzumura, S. Hosoya, S. Nagao, M. Mitsui and A. Nakajima, "Electronic structures of exohedral lanthanide-C60 clusters"J. Chem. Phys. Vol. 121, pp. 2649-2654, 2004.
[36] N. Hosoya, K. Yada, T. Masuda, E. Nakajo, S. Yabushita and A. Nakajima, "Investigation of electronic structures of organolanthanide sandwich complex anions by photoelectron spectroscopy: 4f orbital contribution in the metal-ligand interaction"J. Phys. Chem. A vol. 118, pp.3051-3060, 2014.
[37] N. Hosoya, R. Takegami, J. Suzumura, K. Yada, K. Koyasu, K. Miyajima, M. Mitsui, M. B. Knickelbein, S. Yabushita and A. Nakajima, "Lanthanide organometallic sandwichnanowires: Formation mechanism"J. Phys. Chem. A vol. 109, pp. 9-12, 2005.
[38] M. J. Frisch, et al. GAUSSIAN09, revision C.01 2010 Gaussian Inc. Wallingford CT
[39] A. D. Becke, "Density-functional thermochemis- try.III. The role of exact exchange"J. Chem. Phys. Vol. 98, pp. 5648-5652, 1993.
[40] C. Lee, W. Yang and R. G. Parr, "Development of the colle-salvetti correlation-energy formula into a functional of the electron density"Phys. Rev. B vol. 37, pp.785-789, 1988.
[41] B. Mielich, A. Savin, H. Stoll and H. Preuss, Chem. "Results obtained with the correlation energy density functional of becke and Lee, Yang and Parr"Phys. Rev. Lett. Vol. 157, pp. 200-206, 1989.
[42] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior"Phys. Rev. A vol. 38, pp. 3098-3100, 1988.
[43] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy"Phys. Rev. B vol. 45, pp. 13244-13249, 1992.
[44] A. Goto and S. Yabushita, "Theoretical study on the spin states and intra-cluster spin relaxation of the one-dimensional metal-benzene sandwich clusters: M2(C6H6)3 (M= Sc, Ti, V)"Chem. Phys. Lett. Vol. 454, pp. 382-386, 2008.
[45] H. Y. Li, C. P. Li, H. W. Fan and J. C. Yang, "Studies on electronic structures, energetic, and electron affinities of transition metal-benzene complexes and their anions with density functional theory"J. Mole. Struc: Theochem vol. 952, pp. 67-73, 2010.
[46] M. Dolg, H. Stoll, A. Savin and H. Preuss, "Energy-adjusted pseudopotentials for the rare earth elements"Theor. Chim. Acta vol. 75, pp. 173-194,1989.
[47] M. Dolg, H. Stoll and H. Preuss, "A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds"Theor. Chim. Acta vol. 85, pp. 441-450, 1993.
[48] Y. Wang and M. Dolg, "Pseudopotential study of the ground and excited states of Yb2"Theor. Chem. Acc. Vol. 100, pp. 124-133, 1998.
[49] D. J. Tozer and N. C. Handy, "Improving virtual Kohn-Sham orbitals and eigenvalues: Applica- tion to excitation energies and static polarizabili- ties"J. Chem. Phys. Vol. 109, pp. 10180-10189, 1998.
Cite This Article
  • APA Style

    Li Huifang, Wang Huaiqian. (2017). Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory. Nanoscience and Nanometrology, 3(2), 40-45. https://doi.org/10.11648/j.nsnm.20170302.11

    Copy | Download

    ACS Style

    Li Huifang; Wang Huaiqian. Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory. Nanosci. Nanometrol. 2017, 3(2), 40-45. doi: 10.11648/j.nsnm.20170302.11

    Copy | Download

    AMA Style

    Li Huifang, Wang Huaiqian. Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory. Nanosci Nanometrol. 2017;3(2):40-45. doi: 10.11648/j.nsnm.20170302.11

    Copy | Download

  • @article{10.11648/j.nsnm.20170302.11,
      author = {Li Huifang and Wang Huaiqian},
      title = {Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory},
      journal = {Nanoscience and Nanometrology},
      volume = {3},
      number = {2},
      pages = {40-45},
      doi = {10.11648/j.nsnm.20170302.11},
      url = {https://doi.org/10.11648/j.nsnm.20170302.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.nsnm.20170302.11},
      abstract = {Organometallic compounds composed of metal atoms and organic molecular rings have unique physical and chemical properties, and show attractive applications in optoelectronic devices, catalysts, biosensors and so on. In this paper, the structure and photoelectron spectra of a series of organometallic compounds Ln(C8H8)2¯ (Ln = Ce, Eu, Ho, Nd and Yb) have been systematically studied by using two functional B3LYP and BPW91 based on the density functional theory. The results show organometallic complexes Ln(C8H8)2¯ are typical "sandwich" structure. Both Eu(C8H8)2¯ and Ho(C8H8)2¯ have perfect "sandwich" structure with high D8h point symmetry. Nd(C8H8)2¯ and Yb(C8H8)2¯ possess D4h point symmetry. Ce(C8H8)2¯ is a distorted "sandwich" structure with C1 point symmetry. Generalized koopmans’ theorem is applied to simulate the photoelectron spectra, and the results are in agreement with the experiments.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Determination Structure-Property of Lanthanide Organometallic Sandwich Compounds Using Density Functional Theory
    AU  - Li Huifang
    AU  - Wang Huaiqian
    Y1  - 2017/08/03
    PY  - 2017
    N1  - https://doi.org/10.11648/j.nsnm.20170302.11
    DO  - 10.11648/j.nsnm.20170302.11
    T2  - Nanoscience and Nanometrology
    JF  - Nanoscience and Nanometrology
    JO  - Nanoscience and Nanometrology
    SP  - 40
    EP  - 45
    PB  - Science Publishing Group
    SN  - 2472-3630
    UR  - https://doi.org/10.11648/j.nsnm.20170302.11
    AB  - Organometallic compounds composed of metal atoms and organic molecular rings have unique physical and chemical properties, and show attractive applications in optoelectronic devices, catalysts, biosensors and so on. In this paper, the structure and photoelectron spectra of a series of organometallic compounds Ln(C8H8)2¯ (Ln = Ce, Eu, Ho, Nd and Yb) have been systematically studied by using two functional B3LYP and BPW91 based on the density functional theory. The results show organometallic complexes Ln(C8H8)2¯ are typical "sandwich" structure. Both Eu(C8H8)2¯ and Ho(C8H8)2¯ have perfect "sandwich" structure with high D8h point symmetry. Nd(C8H8)2¯ and Yb(C8H8)2¯ possess D4h point symmetry. Ce(C8H8)2¯ is a distorted "sandwich" structure with C1 point symmetry. Generalized koopmans’ theorem is applied to simulate the photoelectron spectra, and the results are in agreement with the experiments.
    VL  - 3
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • College of Engineering, Huaqiao University, Quanzhou, China

  • College of Engineering, Huaqiao University, Quanzhou, China

  • Section