American Journal of Aerospace Engineering

| Peer-Reviewed |

Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited

Received: 10 January 2018    Accepted: 26 January 2018    Published: 11 February 2018
Views:       Downloads:

Share This Article

Abstract

Composites as a separate class of engineering material have found many applications in aerospace industries where high performance and safety are a prime concern. A review has been done in order to provide a comprehensive analysis on various types of composites used in the aerospace industry, emphasizing on the features, properties, advantages, limitations, and emerging trends in the field.

DOI 10.11648/j.ajae.20180501.12
Published in American Journal of Aerospace Engineering (Volume 5, Issue 1, June 2018)
Page(s) 9-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Aerospace, Composite Materials, Polymer Matrix Composites (PMCs), Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs)

References
[1] F. C. Campbell, “Manufacturing Processes for Advanced Composites”, Elsevier, Oxford, 2003, pp: 1–2.
[2] W. F. Smith, “Principles of Material Science and Engineering”, McGraw- Hill, New York, 2nd ed, 1990.
[3] M. R. Kessler, “Polymer matrix composites: A perspective for a special issue of polymer reviews. Polymer Reviews”, 52 (3), 2012, pp: 229-233.
[4] R. Komanduri, B. Zhang, C. M. Vissa, “Machining of fiber reinforced composites Machining Science and Technology”, (1991), 1 (1), pp: 113-152.
[5] W. D. Callister, “Fundamentals of materials science and engineering: an interactive e. text”, Vol. 5. New York: Wiley, 2001.
[6] S. Chauhan, R. K. Bhushan, Study of Polymer Matrix Composite with Natural Particulate/Fiber in PMC: A Review, International Journal for Advance Research, Ideas and Innovations in Technology, Vol 3, Issue 3, V3I3-1467, 2017.
[7] U.S. Congress, Office of Technology Assessment, “Advanced Materials by Design”, OTAE-351 Washington, DC: U.S. Government Printing Office, 1988.
[8] R. Wang, S. Zheng, Y. George, “Polymer Matrix Composites and Technology”, Woodhead Publishing, 2011, pp. 1-26.
[9] D. A. Jesson, J. F Watts, “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification Polymer Reviews”, 52 (3), 2012, pp: 321-354.
[10] M. K. Gupta, R. K. Srivastava, “Mechanical Properties of Hybrid Fibers Reinforced Polymer Composite: A Review”, Journal of Polymer-Plastics Technology and Engineering, 2015.
[11] M. R. Kessler, “Polymer matrix composites: A perspective for a special issue of polymer reviews”, Polymer Reviews, 52 (3), 2012, pp: 229-233.
[12] J. Jansons, V. Kulakov, A. Aniskevich, A. Lagzdiņš, ”Structural Composites − From Aerospace to Civil Engineering Applications”, Innovations and Technologies News 4 (17), 2012, pp: 3-12.
[13] G. Lubin, “Handbook of Composites”, Chapman & Hall, 1st ed, 1998.
[14] R. Selvam, S. Ravi, R. Raja, Fabrication of SiC particulate reinforced polyester matrix composite and investigation, Materials Science and Engineering 197 (2017) 012052 doi:10.1088/1757-899X/197/1/012052.
[15] C. Zweben, Polymer Matrix Composites, chapter 12 in “Frontiers in Materials Technologies”, M. A. Meyers and O. T. Inal, Elsevier Science, 1985, pp: 365.
[16] V. K. Thakur, M. K. Thakur, R. K. Gupta, “Review: raw natural fiber–based polymer composites” International Journal of Polymer Analysis and Characterization, 19 (3), 2014, pp: 256-271.
[17] R. M. Jones, “Mechanics of Composite Materials”, Taylor & Francis, 2nd ed, 1999.
[18] Composites World,” Aerospace Composites: A Design and Manufacturing Guide”, Gardner Publications Inc. U.S., 2008.
[19] D. Zenkert, “An introduction to sandwich construction”, Engineering materials advisory services, Emas Publishing, London, 1997, pp:53.
[20] B. S. Hayes, L. M. Gammon, Optical Microscopy of Fiber-Reinforced Composites”, ASM international, 2010.
[21] S. Huang, L. Zhou, M. C. Li, Q. Wu, Y. Kojima and D. Zhou, “Preparation and Properties of ElectrospunPoly (Vinyl Pyrrolidone) / Cellulose Nanocrystal / Silver Nanoparticle Composite Fibers Materials, 2016, 9, 523.
[22] G. Bastos, F. Patiño-Barbeito, F. Patiño-Cambeiro and J. Armesto “Nano-Inclusions Applied in Cement-Matrix Composites” Materials, 9, 1015, (2016)
[23] Y. Liu, S. Kumar, “Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers, Polymer Reviews”, 52 (3), 2012, pp: 234-258.
[24] G. Pandey, E. T. Thostenson, “Carbon nanotube-based multifunctional polymer nanocomposites”, Polymer Reviews, 52 (3), 2012, pp: 355-416.
[25] M. A. Fuqua, S. Huo, C. A. Ulven, “Natural fiber reinforced composites”, Polymer Reviews, 52 (3), 2012, pp: 259-320.
[26] E. Rudnik, N. Milanov, G. Matuschek, A. Kettrup, “Ecotoxicity of biocomposites based on renewable feedstock–Preliminary studies”, Chemosphere, 70 (2), 2007, pp: 337-340.
[27] A. K. Mohanty, M. Misra, L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview”, Composite Interfaces, 8 (5), 2001, pp: 313-343.
[28] G. B. V. Kumar and R. Pramod, “Investigation of mechanical properties of aluminium reinforced glass fibre polymer composites”, AIP Conference Proceedings 1859, 020084 2017; https://doi.org/10.1063/1.4990237.
[29] O. S. Salih, H. Ou, W. Sun, D. G. McCartney, “A review of friction stir welding of aluminium matrix composites”, Materials & Design, 86, 2015, pp: 61-71.
[30] T. Prater, “Friction stir welding of metal matrix composites for use in aerospace structures”, Acta Astronautica, 93, 2014, pp: 366-373.
[31] K. K. Chawla, “The high-temperature application of ceramic-matrix composites”, Journal of Minerals, Metals & Materials Society (TMS), 47 (12), 1995, pp: 19-21.
[32] B. McWilliams, J. Yu, M. Pankow, C. F. Yen, “Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites” International Journal of Impact Engineering, 86, 2015, pp: 57-66.
[33] X. Tan, J. Wang, Y. Xu, R. Curran, S. Raghunathan, D. Gore, J. Doherty, “Cost-Efficient Materials in Aerospace: Composite vs Aluminium”, In Collaborative Product and Service Life Cycle Management for a Sustainable World, 2008, pp. 259-266.
[34] L. H. Manjunatha, P. Dinesh, “Novel Technique for Fabrication of Aluminum 6061-MWCNT (Multi-Walled Carbon Nano Tube) Metal Matrix Composites”, ARPN Journal of Engineering and Applied Sciences, Vol. 8, No. 3, March 2013.
[35] D. K. Koli, G. Agnihotri, R. Purohit, “Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields” Materials Today: Proceedings, 2 (4), 2015, pp: 3032-3041.
[36] S. Khoramkhorshid, M. Alizadeh, A. H. Taghvaei, S. Scudino, “Microstructure and mechanical properties of Al-based metal matrix composites reinforced with Al 84 Gd 6 Ni 7 Co 3 glassy particles produced by accumulative roll bonding”, Materials & Design, 90, 2016, pp: 137-144.
[37] J. M. Larsen, S. M. Russ, J. W. Jones, “An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications”, Metallurgical and Materials Transactions A, 26 (12), 1995, pp: 3211-3223.
[38] M. Mrazova, “Advanced composite materials of the future in aerospace industry. INCAS Bulletin, 5 (3), 2013, pp: 139.
[39] P. Sharma, S. Sharma, D. Khanduja, “A study on microstructure of aluminium matrix composites”, Journal of Asian Ceramic Societies, 3, 2015, pp: 240-244.
[40] A. Mony, V. S. Vinila, R. Jacob, H. G. Nair, S. Issac, S. Rajan, J. Isac, “Thermal Behaviour of Nano Crystalline Ceramic PbSrBaTiO”, International Journal of Innovative Science, Engineering & Technology, 1 (10), 2014, pp: 645-649.
[41] A. S. Nair, V. S. Vinila, S. Issac, R. Jacob, A. Mony, H. G. Nair, S. Rajan, D. J. Satheesh, J. Isac, “Studies on Nano Crystalline Ceramic Superconductor LaZrYBaCa2Cu3O11 at Three Different Temperatures”, Journal of Crystallization Process and Technology, 4, 2014, pp: 126-133.
[42] A. S. Nair, J. Isac, “Studies on Thermal Behaviour of Nano Crystalline Ceramic LaZrYBaCa2Cu3O11”, Asian Journal of Science and Technology, 6 (9), 2015, pp: 1750-1754.
[43] J. Philip, L. John, “Impact of Smart Materials in Aero Industry. International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies (ICCOMIM), 2012, pp: 440-446.
[44] M. F Ashby, D. Cebon, “Materials selection in mechanical design”, Le Journal de Physique IV, 3 (C7), C7-1, 1993.
[45] S. Kumar, K. M. Reddy, A. Kumar, G. R. Devi, “Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application”, Aerospace Science and Technology, 26 (1), 2013, pp: 185-191.
[46] A. Çelik, I. Lazoglu, A. Kara, F. Kara, “Wear on SiAlON Ceramic Tools in Drilling of Aerospace Grade CFRP Composites”, Wear, 338-339, 2015, pp: 11-21.
[47] C. Jiménez, K. Mergia, M. Lagos, P. Yialouris, I. Agote, V. Liedtke, J. Barcena, “Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems”, Journal of the European Ceramic Society, 2015.
[48] A. S. Gohardani, O. Gohardani, “Ceramic engine considerations for future aerospace propulsion”, Aircraft Engineering and Aerospace Technology, 84 (2), 2012, pp: 75-86.
[49] S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, “Advanced ceramic matrix composite materials for current and future propulsion technology applications” Acta Astronautica, 55 (3), 2004, pp: 409-420.
[50] R. Naslain, A. Guette, F. Rebillat, R. Pailler, F. Langlais, X. Bourrat, Boron-bearing species in ceramic matrix composites for long-term aerospace applications. Journal of Solid State Chemistry, 177 (2), 2004, pp. 449-456.
Cite This Article
  • APA Style

    Meysam Toozandehjani, Nuruldiyanah Kamarudin, Zahra Dashtizadeh, E. Yee Lim, Ashen Gomes, et al. (2018). Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. American Journal of Aerospace Engineering, 5(1), 9-15. https://doi.org/10.11648/j.ajae.20180501.12

    Copy | Download

    ACS Style

    Meysam Toozandehjani; Nuruldiyanah Kamarudin; Zahra Dashtizadeh; E. Yee Lim; Ashen Gomes, et al. Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. Am. J. Aerosp. Eng. 2018, 5(1), 9-15. doi: 10.11648/j.ajae.20180501.12

    Copy | Download

    AMA Style

    Meysam Toozandehjani, Nuruldiyanah Kamarudin, Zahra Dashtizadeh, E. Yee Lim, Ashen Gomes, et al. Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. Am J Aerosp Eng. 2018;5(1):9-15. doi: 10.11648/j.ajae.20180501.12

    Copy | Download

  • @article{10.11648/j.ajae.20180501.12,
      author = {Meysam Toozandehjani and Nuruldiyanah Kamarudin and Zahra Dashtizadeh and E. Yee Lim and Ashen Gomes and Chandima Gomes},
      title = {Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited},
      journal = {American Journal of Aerospace Engineering},
      volume = {5},
      number = {1},
      pages = {9-15},
      doi = {10.11648/j.ajae.20180501.12},
      url = {https://doi.org/10.11648/j.ajae.20180501.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajae.20180501.12},
      abstract = {Composites as a separate class of engineering material have found many applications in aerospace industries where high performance and safety are a prime concern. A review has been done in order to provide a comprehensive analysis on various types of composites used in the aerospace industry, emphasizing on the features, properties, advantages, limitations, and emerging trends in the field.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited
    AU  - Meysam Toozandehjani
    AU  - Nuruldiyanah Kamarudin
    AU  - Zahra Dashtizadeh
    AU  - E. Yee Lim
    AU  - Ashen Gomes
    AU  - Chandima Gomes
    Y1  - 2018/02/11
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ajae.20180501.12
    DO  - 10.11648/j.ajae.20180501.12
    T2  - American Journal of Aerospace Engineering
    JF  - American Journal of Aerospace Engineering
    JO  - American Journal of Aerospace Engineering
    SP  - 9
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2376-4821
    UR  - https://doi.org/10.11648/j.ajae.20180501.12
    AB  - Composites as a separate class of engineering material have found many applications in aerospace industries where high performance and safety are a prime concern. A review has been done in order to provide a comprehensive analysis on various types of composites used in the aerospace industry, emphasizing on the features, properties, advantages, limitations, and emerging trends in the field.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Malaysia

  • Department of Chemical Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia

  • Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang, Malaysia

  • Department of Forest Production, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia

  • Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia

  • Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia

  • Sections