| Peer-Reviewed

Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons

Received: 12 October 2018    Accepted: 26 October 2018    Published: 16 November 2018
Views:       Downloads:
Abstract

The bivalve Venerupis decussata has been proposed as a sentinel species for assessment of lagoon water. Our study aimed to evaluate the spatial and temporal variation of oxidative stress biomarkers, metal content and DNA damage in Venerupis decussata digestive gland collected seasonally from contaminated (BOUGHRARA “L2”) and comparatively cleaner ( GHAR EL MELH “L1”) lagoons. Trace metal contents (Cu, Pb and Cd) in Venerupis decussata collected at polluted site were 1-2 folds higher compared to the control site and showed maximum variation especially during summer and spring seasons. The current findings indicate a seasonal increase of malondialdehyde (MDA), protein carbonyl (PCO), glutathione (GSH) and metallothioneins (MT) levels in relation to trace element accumulation in Venerupis decussata digestive gland from BOUGHRARA sampling lagoon compared to those from GHAR EL MELH. We found an increase in glutathione-S-transfers (GST) and glutathione peroxides (GPx) activities in clams collected from BOUGHRARA lagoon. A random DNA degradation was observed mostly in digestive gland from the polluted site. The principal component examination of the physiological parameters showed a clear separation between Venerupis decussata collected from the polluted lagoon (L2) and those from the clean one (L1). Our study delivers basic information on the toxicological effects of environmental pollutants in clam through the combination of metabolic and physiological methodologies.

Published in Journal of Chemical, Environmental and Biological Engineering (Volume 2, Issue 2)
DOI 10.11648/j.jcebe.20180202.12
Page(s) 44-51
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Antioxidants Defense, Bioaccumulation, Calms, DNA Damage, Gills, Lagoons

References
[1] S. Bejaoui, D. Boussoufa, M. Tir, I. Haouas-Gharsallah, T. Boudawara, A. Ghram, M. El Cafsi, N. Soudani, “DNA damage and oxidative stress in digestive gland of Venerupis decussata collected from two contrasting habitats in the southern Tunisian coast: biochemical and histopathological studies,”. Cah. Biol. Mar., vol. 58, pp. 123-135, 2017.
[2] M. U. Taner, B. Ustun, A. Erdincler, “A simple tool for the assessment of water quality in polluted lagoon systems: A case study for Küçükçekmece Lagoon, Turkey,” Ecol. Indicat., vol., 11, pp. 749-756, 2011.
[3] C. Solidoro, V. Bandelj, F. B. Aubry, E. Camati, S. Ciavatta, G. Cossarini, C. Facca, P. Franzoi, S. Libralato, D. M. Canu, “Response of the Venice Lagoon Ecosystem to Natural and Anthropogenic Pressures over the Last 50 Years,” In book: Coastal lagoons. Critical habitats of environmental change. Chapter: 19. DOI: 10.1201/EBK1420088304-c19.
[4] I. Khedhri, A. Atoui, M. Ibrahim, A. Afli, L. Aleya, “Assessment of surface sediment dynamics and response of benthic macrofauna assemblages in Boughrara Lagoon (SW Mediterranean Sea),” Ecol. Indicators., vol., 70, pp.77-88, 2016.
[5] D. H. Nourisson, F. Scapini, L. Massi, L. Lazzara, “Optical characterization of coastal lagoons in Tunisia: Ecological assessment to underpin conservation,” Ecol. Infor., vol., 14, pp.79-83, 2013.
[6] M. N. Croteau, S. N. Luoma, A. R. Stewart, “ Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature,” Limnol. Oceanog., vol., 50, pp. 1511-1519.
[7] S. R. Abdel Ghany, “ Heavy metal bioaccumulation in the edible bivalve venerupis decussata collected from port said Egypt,” Wulfenia. J., vol., 24, no. 5.
[8] C. D. Torrea, T. Balbib, G. Grassia, G. Frenzilli, M. Bernardeschi, A. merilli, P. Guidi, L. Canesi, M. Nigro, F. Monaci, V. Scarcelli, L. Rocco, S. Focardi, M. Monopoli, I. Cors, “Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis,” J. Hazard. Materials., vol.,297, pp.92-100, 2015.
[9] V. I. Lushchak, “Environmentally induced oxidative stress in aquatic animals,” Aquat. Toxicol., vol., 101, pp.13-30, 2011.
[10] E. Birben, U. M. Sahiner, C. Sackesen. S. Erzurum, O. Kalayci, “Oxidative Stress and Antioxidant Defense,” World. Allergy. Organ. J., vol., 5, pp. 9–19, 2012.
[11] X. N. Verlecara, K. B. Jenaa, G. B. N. Chainy,” Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures,” Chemosphere, vol., 71, pp. 1977-1985.
[12] O. M. Ighodaro, O. A. Akinloye, “First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid,” Alexandria. J. Medicine. https://doi.org/10.1016/j.ajme.2017.09.001.
[13] I. Boutet, A. Tanguy, D. Moraga, “Response of the Pacific oyster Crassostrea gigas to hydrocarbon contamination under experimental conditions,” Gene, vol., 329, pp.147-157, 2004.
[14] A. P. Fernandes, A. Holmgren, “Glutaredoxins: Glutathione-Dependent Redox Enzymes with Functions Far Beyond a Simple Thioredoxin Backup System,” Antioxid. Redox. Signal., vol 6, no 1. https://doi.org/10.1089/152308604771978354.
[15] [15]P. D. Ray, B. W. Huang, Y. Tsuji,” Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling,” Cell. Signal, vol., 24, pp.981-990.
[16] E. A. D. Almeida, A. C. D. Bainy, A. P. D. M. Loureiro, G. R. Martinez, S. Miyamoto, J. Onuki, L. F. Barbosa, C. C. M. Garcia, F. M. Prado, G. E. Ronsein, C. A. Sigolo, C. B. Brochini, A. M. G. Martins, M. H. G. De Medeiros, P. Di Mascio, “Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: antioxidants, lipid peroxidation and DNA damage,” Comp. Biochem. Physiol – Part C., vol., 146, pp. 588-600, 2007.
[17] V. Hemmadi, “Metallothionein-A potential biomarker to assess the metal contamination in marine fishes- A review,” Interna. J. Bioass, vol.,5, pp. 4961-4973, 2016.
[18] M. L. Carvalho, C. Casaca, T. Pinheiro, J. P. Marques, P. Chevallier, A. SCunh,” Analysis of human teeth and bones from the chalcolithic period by X-ray spectrometry,” Nucl. Inst. Methods. Phy. Research. Section B: Beam Interac. Materials. Atoms, vol., 168, pp.559-565, 2000.
[19] A. Viarengo, E. Ponzano, F. Dondero, R. Fabbri, “A simple spectrophotometric method for metallothionein evaluation in marine organisms: An application to Mediterranean and Antarctic mollusks,” Mar. Environ. Research., vol., 44, pp. 69-84, 1997.
[20] S. Petrovic., et al, “Lysosomal membrane stability and metallothioneins in digestive gland of mussels (mytilus galloprovincialis lam) as biomarkers in a field study,” Mar. Poll. Bulletin, vol., 42, pp.1373-1378, 2001.
[21] H. H. Draper, M. Hadley, “Malondialdehyde determination as index of lipid peroxidation,” Methods. Enzymol., vol., 86, pp. 421-431, 1990.
[22] A. Z. Reznick, L. Packer, “Oxidative damage to proteins: Spectrophotometric methods for carbonyl assay,” Methods. Enzymol., vol., 233, pp. 357-63, 1994.
[23] G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Bioph., vol., 82, pp. 70-77, 1959.
[24] W. H. Habig, M. J. Pabst, W. B. Jakoby,” Glutathione S-transferases. The first enzymatic step in mercapturic acid formation,” J. Biol. Chem, vol., 249, pp. 7130-7139, 1974.
[25] L. Flohe, W. A. Gunzler, “Assays of gluthathione peroxidase,” Methods. Enzymol., vol., 105, pp. 114-121, 1984.
[26] S. J. Clark, J. Melki, “DNA methylation and gene silencing in cancer: which is the guilty party?,” Oncogene., vol., 35, pp. 5380-5387, 2002.
[27] A. Kharroubi, D. Garqouri, H. Baati, C. Azri Assessment of sediment quality in the Mediterranean Sea-Boughrara lagoon exchange areas (southeastern Tunisia): GIS approach-based chemometric methods,” Environ. Monitor. Assessment., vol., 184, pp. 4001-4014, 2012.
[28] F. Ayache, J. R. Thompson, R. J. Flower, A. Boujarra, F. Rouatbi, H. Makina,” Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt),” Hydrobiol. DOI:10.1007/s10750-008-9676-6.
[29] F. Staines-Urías, R. G. Douglas, D. S. Gorsline,”Oceanographic variability in the southern Gulf of California over the past 400 years: evidence from faunal and isotopic records from planktonic foraminifera,” Palaeog. Palaeoclim. Palaeoecol., vol., 284, pp. 337-354, 2009.
[30] H. Khattabi, L. Aleya,”The dynamics of macroinvertebrate assemblages in response to environmental change in four basins of the Etueffont landfill leachate (Belfort, France).,”Water. Air. Soil. Poll., vol., 185, pp. 63–77., 2007.
[31] M. V. R. Kumari, M. Hiramatsu, M. Ebadi, “Free radical scavenging actions of metallothionein isoforms I and II,” Free. Rad. Res., vol., 29, pp. 93-101, 1998.
[32] A. Viarengo, S. Palmero, G. Zanicchi, M. Orunesu, “Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus gal1oprovincialis Lam,” Mar. Environ. Res., vol., 16, pp. 23-26, 1985.
[33] A. Bigot, L. Minguez, L. Giambérini, F. Rodius,“ Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: Transcriptional and histochemical studies,” Environ. Toxicol., vol., 26, https://doi.org/10.1002/tox.20599.
[34] A. Phaniendra, D. B. Jestadi, L. Periyasamy, “ Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases,” Indian. J. Clin. Biochem., vol., 30, pp. 11-26, 2015.
[35] Y. Zhang, J. Song, H. Yuan, Y. Xu, Z. He, L. Duan, “Biomarker responses in the bivalve (Chlamys farreri) to exposure of the environmentally relevant concentrations of lead, mercury, copper Author links open overlay panel,” Environ. Toxicol. Pharmacol., vol., 30, pp. 19-25, 2010.
[36] E. A. Almeida, A. C. Dias Bainy, A. P. De Melo Loureiro, G. R. Glaucia Regina Martinez, S. Miyamoto, J. Onuki, L. F. Barbosa, C. C. Machado Garcia, F. M. Prado, G. E. Ronsein, C. A. Sigolo, C. B. Brochini, A. G. Martins, M. G. De Medeiros, P. Mascio, “Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage,” Comp. Biochem. Physiol. Part A: Mol & Integ. Physiol., vol., 146, pp. 588-600, 2007.
[37] P. Shenai-Tirodkar, M. U. Gauns, M. W. A. Mujawar, Z. A. Ansari, “Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure,” Ecotoxicol. Environ. Safety., vol., 142, pp. 87-94, 2017.
[38] T. H. Vlahogianni, T. H. Vlahogianni, “Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis,” Chem. Ecol., vol 23, pp. 361-371, 2007.
[39] N. Mahmoud, M. Dellali, M. El Bour, P. Aissa, E. Mahmoudi, “The use of Fulviafragilis (Mollusca :Cardiidae) in the biomonitoring of Bizerta lagoon : A mutimarkers approach,” Ecol. Indicators., vol., 10, pp. 696-702, 2010.
[40] M. N. Lund, C. P. Baron, “ Protein oxidation in foods and food quality. In: Skibsted LH, Risbo J, Anderson ML, editors. Chemical deteroration and physical instability in food and beverages. Cambridge, UK: Woodhead Publishing Limited. P33-61.
[41] B. Halliwell, J. M Gutteridge, “Free radicals in biology and medicine,” 4th ed. Oxford: Oxford University Press, 944pp, 2007.
[42] B. C. Almroth, J. Sturve, E. Stephensen, T. F. Holth, L. Forlin,” Protein carbonyl and antioxidant defenses in cork wrasse (Symphodus melops) from a havy metal polluted and a PAH polluted site,” Mar. Environ. Research., 2008. https://doi.org/10.1016/j.marenvres.2008.04.002.
[43] [43]P. J. O’Brien, “Free-radical-mediated DNA binding,” Environ. Health. Perspect., vol64, pp. 219-232, 1985.
[44] B. Sellami, A. Khazri, H. Louati, M. Dellali, M. R. Driss, P. Aissa, E. Mahmoudi, B. Hamouda, A. V. Coelho, D. Sheehan, “Effects of anthracene on filtration rates, antioxidant defense system, and redox proteomics in the Mediterranean clam Ruditapes decussatus (Mollusca: Bivalvia),” Environ. Sci. Poll. Res., vol., 22, pp. 10956-68, 2015.
[45] A. Cravo, C. Pereira, T. Gomes, C. Cardoso, A. Serafim, C. Almeida, T. Rocha, B. Lopes, R. Company, A. Medeiros, R. Norberto, R. Pereira, O, Araujo, M. J. Bebianno,”A multibiomarker approach in the clam Ruditapes decussatus to assess the impact of pollution in the Ria Formosa lagoon, South Coast of Portugal,” Mar. Environ. Research., vol., 75, pp. 23-34, 2012.
[46] F. Regoli, H. Hummel, C. Amiard-Triquet, C. Larroux, A. Sukhotin, “ Trace Metals and Variations of Antioxidant Enzymes in Arctic Bivalve Populations,” Arch. Environ. Contam. Toxicol., vol., 35, pp. 594-601, 1998.
[47] R. Trevisan, S. Flesch, J. J. Mattos, M. R. Milani, A. C. D. Bainy, A. L. Dafre,” Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna,” Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., vol., 159, pp. 22-30, 2014.
Cite This Article
  • APA Style

    Safa Bejaoui, Khaoula Telahigue, Imene Chetoui, Imen Rabeh, Chaima Fouzai, et al. (2018). Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons. Journal of Chemical, Environmental and Biological Engineering, 2(2), 44-51. https://doi.org/10.11648/j.jcebe.20180202.12

    Copy | Download

    ACS Style

    Safa Bejaoui; Khaoula Telahigue; Imene Chetoui; Imen Rabeh; Chaima Fouzai, et al. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons. J. Chem. Environ. Biol. Eng. 2018, 2(2), 44-51. doi: 10.11648/j.jcebe.20180202.12

    Copy | Download

    AMA Style

    Safa Bejaoui, Khaoula Telahigue, Imene Chetoui, Imen Rabeh, Chaima Fouzai, et al. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons. J Chem Environ Biol Eng. 2018;2(2):44-51. doi: 10.11648/j.jcebe.20180202.12

    Copy | Download

  • @article{10.11648/j.jcebe.20180202.12,
      author = {Safa Bejaoui and Khaoula Telahigue and Imene Chetoui and Imen Rabeh and Chaima Fouzai and Wafa Trabelsi and Ines Houas-Gharsallah and M’hamed El Cafsi and Nejla Soudani},
      title = {Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons},
      journal = {Journal of Chemical, Environmental and Biological Engineering},
      volume = {2},
      number = {2},
      pages = {44-51},
      doi = {10.11648/j.jcebe.20180202.12},
      url = {https://doi.org/10.11648/j.jcebe.20180202.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jcebe.20180202.12},
      abstract = {The bivalve Venerupis decussata has been proposed as a sentinel species for assessment of lagoon water. Our study aimed to evaluate the spatial and temporal variation of oxidative stress biomarkers, metal content and DNA damage in Venerupis decussata digestive gland collected seasonally from contaminated (BOUGHRARA “L2”) and comparatively cleaner ( GHAR EL MELH “L1”) lagoons. Trace metal contents (Cu, Pb and Cd) in Venerupis decussata collected at polluted site were 1-2 folds higher compared to the control site and showed maximum variation especially during summer and spring seasons. The current findings indicate a seasonal increase of malondialdehyde (MDA), protein carbonyl (PCO), glutathione (GSH) and metallothioneins (MT) levels in relation to trace element accumulation in Venerupis decussata digestive gland from BOUGHRARA sampling lagoon compared to those from GHAR EL MELH. We found an increase in glutathione-S-transfers (GST) and glutathione peroxides (GPx) activities in clams collected from BOUGHRARA lagoon. A random DNA degradation was observed mostly in digestive gland from the polluted site. The principal component examination of the physiological parameters showed a clear separation between Venerupis decussata collected from the polluted lagoon (L2) and those from the clean one (L1). Our study delivers basic information on the toxicological effects of environmental pollutants in clam through the combination of metabolic and physiological methodologies.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupis Decussata Gills Collected From Two Coast Tunisian Lagoons
    AU  - Safa Bejaoui
    AU  - Khaoula Telahigue
    AU  - Imene Chetoui
    AU  - Imen Rabeh
    AU  - Chaima Fouzai
    AU  - Wafa Trabelsi
    AU  - Ines Houas-Gharsallah
    AU  - M’hamed El Cafsi
    AU  - Nejla Soudani
    Y1  - 2018/11/16
    PY  - 2018
    N1  - https://doi.org/10.11648/j.jcebe.20180202.12
    DO  - 10.11648/j.jcebe.20180202.12
    T2  - Journal of Chemical, Environmental and Biological Engineering
    JF  - Journal of Chemical, Environmental and Biological Engineering
    JO  - Journal of Chemical, Environmental and Biological Engineering
    SP  - 44
    EP  - 51
    PB  - Science Publishing Group
    SN  - 2640-267X
    UR  - https://doi.org/10.11648/j.jcebe.20180202.12
    AB  - The bivalve Venerupis decussata has been proposed as a sentinel species for assessment of lagoon water. Our study aimed to evaluate the spatial and temporal variation of oxidative stress biomarkers, metal content and DNA damage in Venerupis decussata digestive gland collected seasonally from contaminated (BOUGHRARA “L2”) and comparatively cleaner ( GHAR EL MELH “L1”) lagoons. Trace metal contents (Cu, Pb and Cd) in Venerupis decussata collected at polluted site were 1-2 folds higher compared to the control site and showed maximum variation especially during summer and spring seasons. The current findings indicate a seasonal increase of malondialdehyde (MDA), protein carbonyl (PCO), glutathione (GSH) and metallothioneins (MT) levels in relation to trace element accumulation in Venerupis decussata digestive gland from BOUGHRARA sampling lagoon compared to those from GHAR EL MELH. We found an increase in glutathione-S-transfers (GST) and glutathione peroxides (GPx) activities in clams collected from BOUGHRARA lagoon. A random DNA degradation was observed mostly in digestive gland from the polluted site. The principal component examination of the physiological parameters showed a clear separation between Venerupis decussata collected from the polluted lagoon (L2) and those from the clean one (L1). Our study delivers basic information on the toxicological effects of environmental pollutants in clam through the combination of metabolic and physiological methodologies.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Higher Institute of Marine Sciences and Technology, La Goulette Center, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia

  • Sections