Science Journal of Analytical Chemistry

| Peer-Reviewed |

Organoleptic Changes of the Fermented Autolysate of Fish

Received: Sep. 24, 2018    Accepted: Oct. 17, 2018    Published: Nov. 19, 2018
Views:       Downloads:

Share This Article

Abstract

In Benin, fermented autolysates of fish are neglected. This neglect is largely due to their strong smell and lack of knowledge of their nutritional value. Knowledge of certain physicochemical parameters during the fermentation process may allow to know the chemical changes that occurred during the transformation of the fish autolysate. Thus, a kinetic fermentation study of three different autolysates based on electrical conductivity (EC), total dissolved solids (TDS) and pH is done to understand the origin of the consumption rejection of fermented autolysates in Benin. The obtained results show that the electrical conductivities vary between 3077μS and 3206μS for tuna, between 3049μS and 3216μS for the bass, between 2700μS and 2975μS for catfish. Tuna, bass and catfish have arerage TDS of 2040mg / L, 2029mg / L and 1847mg / L, respectively. As for pH, they vary from 7.70 to 8.71 for tuna, from 7.96 to 8.80 for the bass and from 7.92 to 8.29 for catfish. The analysis of the kinetics of electrical conductivities and of TDS reveals that the latter are identical and present three different phases, namely a regression which corresponds to a grouping of the particles in the medium, an increase which shows the fluctuation of the particles and a stabilization which indicates the end of the fermentation. Analysis of pH kinetics shows that the fermentation medium is basic. This proves that the particles in suspension of the fermentation medium are dimethylamine, trimethylamine, ammonia, etc. The fermented autolysates of fish are rich in amino acids and fatty acids (protein and lipid breakdown products), and their strong smell is due to volatile bases resulting from the reaction of amines.

DOI 10.11648/j.sjac.20180604.11
Published in Science Journal of Analytical Chemistry ( Volume 6, Issue 4, July 2018 )
Page(s) 32-37
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Fish Autolysate, Fermentation, Chemical Modifications, Chemical Approach

References
[1] Panda, S. H., et al. (2011). "Fermented fish and fish products: An overview." 2: 132-17.
[2] Johnson, H. (2002). Perspectives de marché dans le secteur international du poisson et des fruits de mer, perspective canadienne, Bureau du Commissaire au développement de l'aquaculture.
[3] Boury, M. J. R. d. T. d. l. I. d. P. M. (1952). "Les hydrolysats de poisson." 17(67-68): 2.
[4] Fouchereau‐Peron, M., et al. (1999). "Isolation of an acid fraction from a fish protein hydrolysate with a calcitonin‐gene‐related‐peptide‐like biological activity." 29(1): 87-9.
[5] de Vries, H., et al. (2018). "Meeting new challenges in food science technology: The development of complex systems approach for food and biobased research." 46: 1-6.
[6] Broutin, C. and N. J. P. E. d. G. Bricas (2006). "Agroalimentaire et lutte contre la pauvreté en Afrique subsaharienne."
[7] Falguera, V., et al. (2012). "An integrated approach to current trends in food consumption: Moving toward functional and organic products?" 26(2): 274-281.
[8] French, S. A., et al. (2012). "Eating behavior dimensions. Associations with energy intake and body weight. A review." 59(2): 541-549.
[9] Cuevas, R. P., et al. (2017). "Developing a framework of gastronomic systems research to unravel drivers of food choice." 9: 88-99.
[10] Farber, L. J. F. a. f. (2012). "Freshness tests." 4: 65-126.
[11] Dossou-Yovo, P. (2002). Justification biochimique de l’amélioration des procédés traditionnels de production du lanhouin au Bénin, Thèse de Doctorat, Université technologique d’Etat de Krasnodar, Russie.
[12] Duthoit, F., et al. (2005). "Relationships between sensorial characteristics and microbial dynamics in “Registered Designation of Origin” Salers cheese." 103(3): 259-270.
[13] Pearson, W. N. J. J. (1962). "Biochemical appraisal of the vitamin nutritional status in man." 180: 49.
[14] Babbitt, J. K., et al. (1972). "Decomposition of trimethylamine oxide and changes in protein extractability during frozen storage of minced and intact hake (Merluccius productus) muscle." 20(5): 1052-1054.
[15] Sainclivier, M. (1993). "L'industrie alimentaire halieutique: la conservation par des moyens physiques; troisiéme partie; l'utilisation du froid."
[16] Hiltz, D. F., et al. (1976). "Deteriorative changes during frozen storage in fillets and minced flesh of silver hake (Merluccius bilinearis) processed from round fish held in ice and refrigerated sea water." 33(11): 2560-2567.
[17] Sotelo, C. G., et al. (2000). "TMAO-degrading enzymes." 167-190.
[18] PAULE NEYRAT, 2007. Poisson féroce et vorace. 2p.http //www.e-sante.fr/liste-auteurs.e-sante.fr.
[19] Ansorena, D., et al. (2002). "Analysis of biogenic amines in northern and southern European sausages and role of flora in amino production." 61(2): 141-147.
[20] Essuman, K. M. (1994). Le poisson fermenté en Afrique: traitement, commercialisation et consommation, Food & Agriculture Org.
Cite This Article
  • APA Style

    Mahouglo Barnabé Houessou, Chimène Agrippine Rodogune Yelouassi, Wilfried Zanmenou, Pierre Dossou-Yovo. (2018). Organoleptic Changes of the Fermented Autolysate of Fish. Science Journal of Analytical Chemistry, 6(4), 32-37. https://doi.org/10.11648/j.sjac.20180604.11

    Copy | Download

    ACS Style

    Mahouglo Barnabé Houessou; Chimène Agrippine Rodogune Yelouassi; Wilfried Zanmenou; Pierre Dossou-Yovo. Organoleptic Changes of the Fermented Autolysate of Fish. Sci. J. Anal. Chem. 2018, 6(4), 32-37. doi: 10.11648/j.sjac.20180604.11

    Copy | Download

    AMA Style

    Mahouglo Barnabé Houessou, Chimène Agrippine Rodogune Yelouassi, Wilfried Zanmenou, Pierre Dossou-Yovo. Organoleptic Changes of the Fermented Autolysate of Fish. Sci J Anal Chem. 2018;6(4):32-37. doi: 10.11648/j.sjac.20180604.11

    Copy | Download

  • @article{10.11648/j.sjac.20180604.11,
      author = {Mahouglo Barnabé Houessou and Chimène Agrippine Rodogune Yelouassi and Wilfried Zanmenou and Pierre Dossou-Yovo},
      title = {Organoleptic Changes of the Fermented Autolysate of Fish},
      journal = {Science Journal of Analytical Chemistry},
      volume = {6},
      number = {4},
      pages = {32-37},
      doi = {10.11648/j.sjac.20180604.11},
      url = {https://doi.org/10.11648/j.sjac.20180604.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.sjac.20180604.11},
      abstract = {In Benin, fermented autolysates of fish are neglected. This neglect is largely due to their strong smell and lack of knowledge of their nutritional value. Knowledge of certain physicochemical parameters during the fermentation process may allow to know the chemical changes that occurred during the transformation of the fish autolysate. Thus, a kinetic fermentation study of three different autolysates based on electrical conductivity (EC), total dissolved solids (TDS) and pH is done to understand the origin of the consumption rejection of fermented autolysates in Benin. The obtained results show that the electrical conductivities vary between 3077μS and 3206μS for tuna, between 3049μS and 3216μS for the bass, between 2700μS and 2975μS for catfish. Tuna, bass and catfish have arerage TDS of 2040mg / L, 2029mg / L and 1847mg / L, respectively. As for pH, they vary from 7.70 to 8.71 for tuna, from 7.96 to 8.80 for the bass and from 7.92 to 8.29 for catfish. The analysis of the kinetics of electrical conductivities and of TDS reveals that the latter are identical and present three different phases, namely a regression which corresponds to a grouping of the particles in the medium, an increase which shows the fluctuation of the particles and a stabilization which indicates the end of the fermentation. Analysis of pH kinetics shows that the fermentation medium is basic. This proves that the particles in suspension of the fermentation medium are dimethylamine, trimethylamine, ammonia, etc. The fermented autolysates of fish are rich in amino acids and fatty acids (protein and lipid breakdown products), and their strong smell is due to volatile bases resulting from the reaction of amines.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Organoleptic Changes of the Fermented Autolysate of Fish
    AU  - Mahouglo Barnabé Houessou
    AU  - Chimène Agrippine Rodogune Yelouassi
    AU  - Wilfried Zanmenou
    AU  - Pierre Dossou-Yovo
    Y1  - 2018/11/19
    PY  - 2018
    N1  - https://doi.org/10.11648/j.sjac.20180604.11
    DO  - 10.11648/j.sjac.20180604.11
    T2  - Science Journal of Analytical Chemistry
    JF  - Science Journal of Analytical Chemistry
    JO  - Science Journal of Analytical Chemistry
    SP  - 32
    EP  - 37
    PB  - Science Publishing Group
    SN  - 2376-8053
    UR  - https://doi.org/10.11648/j.sjac.20180604.11
    AB  - In Benin, fermented autolysates of fish are neglected. This neglect is largely due to their strong smell and lack of knowledge of their nutritional value. Knowledge of certain physicochemical parameters during the fermentation process may allow to know the chemical changes that occurred during the transformation of the fish autolysate. Thus, a kinetic fermentation study of three different autolysates based on electrical conductivity (EC), total dissolved solids (TDS) and pH is done to understand the origin of the consumption rejection of fermented autolysates in Benin. The obtained results show that the electrical conductivities vary between 3077μS and 3206μS for tuna, between 3049μS and 3216μS for the bass, between 2700μS and 2975μS for catfish. Tuna, bass and catfish have arerage TDS of 2040mg / L, 2029mg / L and 1847mg / L, respectively. As for pH, they vary from 7.70 to 8.71 for tuna, from 7.96 to 8.80 for the bass and from 7.92 to 8.29 for catfish. The analysis of the kinetics of electrical conductivities and of TDS reveals that the latter are identical and present three different phases, namely a regression which corresponds to a grouping of the particles in the medium, an increase which shows the fluctuation of the particles and a stabilization which indicates the end of the fermentation. Analysis of pH kinetics shows that the fermentation medium is basic. This proves that the particles in suspension of the fermentation medium are dimethylamine, trimethylamine, ammonia, etc. The fermented autolysates of fish are rich in amino acids and fatty acids (protein and lipid breakdown products), and their strong smell is due to volatile bases resulting from the reaction of amines.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Faculty of Science and Technology, University of Abomey Calavi, Abomey-Calavi, Bénin

  • Faculty of Science and Technology, University of Abomey Calavi, Abomey-Calavi, Bénin

  • Faculty of Science and Technology, University of Abomey Calavi, Abomey-Calavi, Bénin

  • Faculty of Science and Technology, University of Abomey Calavi, Abomey-Calavi, Bénin

  • Section