American Journal of Modern Physics

| Peer-Reviewed |

The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology

Received: Aug. 28, 2016    Accepted: Aug. 30, 2016    Published: Sep. 26, 2017
Views:       Downloads:

Share This Article

Abstract

Biological systems are dependent upon and intertwined with aqueous systems. We will present empirically derived evidence of the unique properties of water and demonstrate the efficacious role of molecular electromagnetic informational encoding as mediated through aqueous dynamics and mnemic properties. Working theory will then be articulated from quantum, thermodynamic and Hadronic aspects. An aqueous molecular species of dynamic magnecule will then be defined. Implications are drawn which point to a possible nontoxic, purely informational potential for future medical and pharmacological science. Magnecules and aqueous informational magnecular dynamics may one day redefine energy storage and production, as well as medical practice.

DOI 10.11648/j.ajmp.s.2017060401.12
Published in American Journal of Modern Physics ( Volume 6, Issue 4-1, August 2017 )

This article belongs to the Special Issue Issue III: Foundations of Hadronic Chemistry

Page(s) 17-28
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Magnecule, Liquid Water, Aqueous Systems, Information, Electromagnetism

References
[1] Amyan, A. and Ayrapetyan, S. (2004) The Biological Effect of Extremely Low Frequency Electromagnetic Fields and Vibrations on Barley Seed Hydration and Germination. The Scientific World Journal, 4, 55-69. http://downloads.hindawi.com/journals/tswj/2004/203158.pdfhttp://dx.doi.org/10.1100/tsw.2004.179
[2] Amyan, A. and Ayrapetyan, S. (2004a) On the Modulation Effect of Pulsing and Static Magnetic Fields and Mechanical Vibrations on Barley Seed Hydration. Physiological Chemistry and Physics and Medical NMR, 36, 69-84. http://www.ncbi.nlm.nih.gov/pubmed/15789974
[3] Amyan, A. and Ayrapetyan, S. (2006) The Effects of EMF-Pretreated Distillated Water on Barley Seed Hydration and Germination Potential. In: Ayrapetyan, S. N. and Markov, M. S., Eds., BIOELECTROMAGNETICS. Current Concepts, Springer, Dordrecht, 65-86. http://link.springer.com/chapter/10.1007%2F1-4020-4278-7_4
[4] Betti, L., Trebbi, G., Fregola, F., Zurla, M., Mesirca, P., Brizzi, M. and Borghini, F. (2011) Weak Static and Extremely Low Frequency Magnetic Fields Affect in Vitro Pollen Germination. The Scientific World Journal, 11, 875-890. http://www.ncbi.nlm.nih.gov/pubmed/21516284, http://dx.doi.org/10.1100/tsw.2011.83
[5] Brillouin, L. (1962) Science and Information Theory. Academic Press, New York.
[6] Brizhik, L. S., Musumeci, F. and Ho, M-W., Eds. (2003) Energy and Information Transfer in Biological Systems. World Scientific Publishing, River Edge.
[7] Brizhik, L. and Foletti, A. (2014) Nonlinear Quantum Phenomena and Biophysical Aspects of Complexity Related to Health and Disease. Journal of Biological Regulators & Homeostatic Agents, 28, 357-366. https://www.researchgate.net/publication/266945922_Nonlinear_quantum_phenomena_and_biophysical_aspects_of_complexity_related_to_health_and_disease
[8] Cai, J., Popescu, S. and Briegel, H. J. (2010) Dynamic Entanglement in Oscillating Molecules and Potential Biological Implications. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 82, 021921. https://journals.aps.org/pre/issues/82/2
[9] Chang, K. T. and Weng, C. I. (2006) The Effect of an External Magnetic Field on the Structure of Liquid Water Using Molecular Dynamics Simulation. Journal of Applied Physics, 100, 043917. https://www.researchgate.net/publication/228810050. The_effect_of_an_external_magnetic_field_on_the_structure_of_liquid_water_using_molecular_dynamics_simulation http://dx.doi.org/10.1063/1.2335971
[10] Chang, K. T. and Weng, C. I. (2008) An Investigation into Structure of Aqueous NaCl Electrolyte Solutions under Magnetic Fields. Computational Materials Science, 43, 1048-1055. http://www.sciencedirect.com/science/article/pii/S0927025608001262, http://dx.doi.org/10.1016/j.commatsci.2008.02.020
[11] Cifra, M., Fields, J. Z. and Farhadi, A. (2010) Electromagnetic Cellular Interaction. Progress in Biophysics and Molecular Biology, 105, 223-246. http://www.ncbi.nlm.nih.gov/pubmed/20674588 http://dx.doi.org/10.1016/j.pbiomolbio.2010.07.003
[12] Davenas, E., Beauvais, F., Amara, J., Oberbaum, M., Robinzon, B., Miadonnai, A., Tedeshi, A., Pomeranz, B., Fortner, P., et al. (1998) Human Basophil Degranulation Triggered by Very Dilute Antiserum against IgE. Nature, 333, 816-818. http://www.ncbi.nlm.nih.gov/pubmed/2455231, http://dx.doi.org/10.1038/333816a0
[13] Del Giudice, E. (2012) Emergence of Quantum Coherence in Liquid Water and Aqueous Systems. Seventh Annual Conference on the Physics, Chemistry and Biology of Water Vermont, USA, 17-21 October 2012 http://www.waterjournal.org/uploads/vol5/supplement/DelGiudice.pdf
[14] Del Giudice, E., Tedeschi, A., Vitiello, G. and Voeikov, V. (2013) Coherent Structures in Liquid Water Close to Hydrophilic Surfaces. Journal of Physics: Conference Series, 442, 012028. http://iopscience.iop.org/article/10.1088/1742-6596/442/1/012028, http://dx.doi.org/10.1088/1742-6596/442/1/012028
[15] De Ninno, A. and Castellano, A. C. (2011) On the Effect of Weak Magnetic Field on Solutions of Glutamic Acid: The Function of Water. Journal of Physics: Conference Series, 329, 012025. http://iopscience.iop.org/article/10.1088/1742-6596/329/1/012025, http://dx.doi.org/10.1088/1742-6596/329/1/012025
[16] de Reidmatten, H. (2013) Viewpoint: A Long-Term Memory for Light Physics 6, 80 http://physics.aps.org/articles/v6/80
[17] Dunning-Davies, J. (2012) A Discussion of Structure and Memory in Water. Hadronic Journal, 35, 661-669.
[18] Endler, P. C., Citro, M., Pongratz, W., Smith, C. W., Vinattieri, C., Senekowitsch, F., (1995). Transfer of molecular information using a bioresonance instrument (BICOM) in amphibian trials. Acta Medica Empirica 44, 1–16.
[19] Fesenko, E. E. and Gluvstein, A. (1995) Changes in the State of Water, Induced by Radiofrequency Electromagnetic Fields. FEBS Letters, 367, 53-55. http://www.sciencedirect.com/science/article/pii/0014579395005065, http://dx.doi.org/10.1016/0014-5793(95)00506-5
[20] Foletti, A., Ledda, M., D’Emilia, E., Grimaldi, S. and Lisi, A. (2011) Differentiation of Human LAN-5 Neuroblastoma Cells Induced by Extremely Low Frequency Electronically Transmitted Retinoic Acid. The Journal of Alternative and Complementary Medicine, 17, 701-704. http://www.ncbi.nlm.nih.gov/pubmed/21721927 http://dx.doi.org/10.1089/acm.2010.0439
[21] Foletti, A., Ledda, M., D’Emilia, E., Grimaldi, S. and Lisi, A. (2012) Experimental Finding on the Electromagnetic Information Transfer of Specific Molecular Signals Mediated through Aqueous System on Two Human Cellular Models. The Journal of Alternative and Complementary Medicine, 18, 258-261. http://online.liebertpub.com/doi/abs/10.1089/acm.2011.0104?src=recsys&journalCode=acm http://dx.doi.org/10.1089/acm.2011.0104
[22] Foletti, A., Ledda, M., Piccirillo, S., Grimaldi, S. and Lisi, A. (2014) Electromagnetic Information Delivery as a New Tool in Translational Medicine. International Journal of Clinical and Experimental Medicine, 7, 2550-2556. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211758/
[23] Heinze, G., Hubrich, C., and Halfmann, T. (2013) Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute Phys. Rev. Lett. 111, 033601 DOI: http://dx.doi.org/10.1103/PhysRevLett.111.033601
[24] Heredia-Rojas, J. A., Torres-Flores, A. C., Rodríguez-De la Fuente, A. O., Mata-Cárdenas, B. D., Rodríguez-Flores, L. E., Barrón-González, M. P., Torres-Pantoja, A. C. and Alcocer-González, J. M. (2011) Entamoeba histolytica and Trichomonas vaginalis: Trophozoite Growth Inhibition by Metronidazole Electro-Transferred Water. Experimental Parasitology, 127, 80-83. http://www.ncbi.nlm.nih.gov/pubmed/20603119 http://dx.doi.org/10.1016/j.exppara.2010.06.026
[25] Heredia-Rojas, J. A., Gomez-Flores, R., Rodríguez-De la Fuente, A. O., Monreal-Cuevas, E., Torres-Flores, A. C., Rodríguez-Flores, L. E., Beltcheva, M. and Torres-Pantoja, A. C. (2012) Antimicrobial Effect of Amphotericin B Electronically-Activated Water against Candida albicans. African Journal of Microbiology Research, 6, 3684-3689. http://www.academicjournals.org/article/article1380805042_Heredia-Rojas et al.pdf
[26] Heredia-Rojas, J. A., Villarreal-Treviño, L., Rodríguez-De la Fuente, A. P., Herrera-Menchaca, L. I., Gomez-Flores, R., Mata-Cárdenas, B. D. and Rodríguez-Flores, L. E. (2015) Antimicrobial Effect of Vancomycin Electro-Transferred Water against Methicillin-Resistant Staphylococcus aureus Variant. African Journal of Traditional, Complementary and Alternative Medicines, 12, 104-108. http://dx.doi.org/10.4314/ajtcam.v12i1.15
[27] Karbowski L. M., Michael A. Persinger, M A. (2015) Variable Viscosity of Water as the Controlling Factor in Energetic Quantities That Control Living Systems: Physicochemical and Astronomical Interactions International Letters of Chemistry, Physics and Astronomy 4 1-9 ISSN 2299-3843
[28] Lavenda, B. H. and Dunning-Davies, J. (1990) The Essence of the Second Law Is Concavity. Foundations of Physics Letters, 3, 435-441. http://link.springer.com/article/10.1007%2FBF00665928#page-1, http://dx.doi.org/10.1007/BF00665928
[29] Manning, A. G., Khakimov, R. I., Dall, R. G., Truscott, A. G. (2015) Wheeler's delayed-choice gedanken experiment with a single atom Nature Physics 11, 539–542 doi: 10.1038/nphys3343 http://www.nature.com/nphys/journal/v11/n7/full/nphys3343.html
[30] Mercola, J. (2013) Extracts from an interview of Dr. Pollack http://articles.mercola.com/sites/articles/archive/2013/08/18/exclusion-zone-water.aspx
[31] Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A. and Vitiello, G. (2011) DNA Waves and Water. Journal of Physics: Conference Series, 306, 012007. http://dx.doi.org/10.1088/1742-6596/306/1/012007
[32] Montangnier L. (2014) Water Memory video. Retrieved from: https://www.youtube.com/watch?v=R8VyUsVOic0
[33] Mossbridge J., Tressoldi P., Utts J., Ives J., Radin D., Jonas W. (2014) Predicting the unpredictable: critical analysis and practical implications of predictive anticipatory activity. Frontiers in Human Neuroscience. (8) doi: 10.3389/fnhum.2014.00146 http://journal.frontiersin.org/article/10.3389/fnhum.2014.00146/full
[34] Murugan, N. J., et al. (2015) Maintained Exposure to Spring Water but Not Double Distilled Water in Darkness and Thixotropic Conditions to Weak (~1 μT) Temporally Patterned Magnetic Fields Shift Photon Spectroscopic Wavelengths: Effects of Different Shielding Materials. Journal of Biophysical Chemistry, 6, 14-28. http://dx.doi.org/10.4236/jbpc.2015.61002
[35] Norman, R. L., Dunning-Davies, J., Heredia-Rojas, J. A. and Foletti, A. (2016) Quantum Information Medicine: Bit as It—The Future Direction of Medical Science: Antimicrobial and Other Potential Nontoxic Treatments. World Journal of Neuroscience, 6, 193-207. http://dx.doi.org/10.4236/wjns.2016.63024
[36] Norman, R. and Tamulis, A. (2016) Quantum Entangled Prebiotic Evolutionary Process Analysis as Integrated Information: from the origins of life to the phenomenon of consciousness. Quantum Matter, in Press.
[37] Pang, X. F. and Deng, B. (2008) Investigation of Changes in Properties of Water under the Action of a Magnetic Field. Science in China Series G: Physics, Mechanics & Astronomy, 51, 1621-1632. http://phys.scichina.com:8083/sciGe/EN/abstract/abstract410149.shtml
[38] Persinger M. A. (2015) Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles) Entropy, 17, 6200-6212; doi: 10.3390/e17096200.
[39] Pollack G. H. (2013) The Fourth Phase of Water. EBNER & SONS PUBLISHERS, SEATTLE WA.
[40] Pollack G. H. (2013a) Electrically Structured Water video. Retrieved from: https://www.youtube.com/watch?v=JnGCMQ8TJ_g
[41] Popp, F. A. (1999) About the Coherence of Biophotons. “Macroscopic Quantum Coherence”, Proceedings of an International Conference on the Boston University 1-12. World Scientific. http://www.stealthskater.com/Documents/Consciousness_31.pdf
[42] Prasad, A., Rossi, C., Lamponi, S., Pospíšil, P. and Foletti, A. (2014) New Perspective in Cell Communication: Potential Role of Ultra-Weak Photon Emission. Journal of Photochemistry and Photobiology B, 139, 47-53. http://www.ncbi.nlm.nih.gov/pubmed/24703082 http://dx.doi.org/10.1016/j.jphotobiol.2014.03.004
[43] Rossi, C., Foletti, A., Magnani, A. and Lamponi, S. (2011) New Perspectives in Cell Communication: Bioelectromagnetics Interactions. Seminars in Cancer Biology, 21, 207-214. http://www.sciencedirect.com/science/article/pii/S1044579X11000289, http://dx.doi.org/10.1016/j.semcancer.2011.04.003
[44] Sands D. (2016) Are the Boltzmann and Thermodynamics Entropies always the Same? in Unified Field Mechanics, eds. R. Amoroso, L. Kauffman and P. Rowlands, World Scientific.
[45] Santilli R. M. (2001) Foundations of Hadronic Chemistry. Kluwer Academic Publishers, Dordrecht.
[46] Santilli R. M. (2005) The New Fuels with Magnecular Structure, International Academic Press. http://www.i-b-r.org/docs/Fuels-Magnecular-Structure.pdf
[47] Santilli, R. M. (2008) [Draft Feb. 26] HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY Volume III: Iso-, Geno-, Hyper-Formulations for Matter and Their Isoduals for Antimatter. International Academic Press. http://www.i-b-r.org/docs/HMMC-III-02-26-08.pdf
[48] Santilli R. M. (2012) [draft of Dec 20th] A TENTATIVE MAGNECULAR STRUCTURE MODEL OF THE WATER LIQUID STATE.
[49] Tamulis, A., Berteska, L., Grigalavicius, M. and Baltrusaitis, J. (2016) Quantum Dynamics of Self-Assembly of Minimal Photosynthetic Cells. Quantum Matter, 5, 5. http://dx.doi.org/10.1166/qm.2016.1248
[50] Thomas, Y., Schiff, M., Belkadi, L., Jurgens, P., Kahhak, L., Benveniste, J., (2000). Activation of human neutrophils by electronically transmitted phorbolmyristate acetate. Medical Hypotheses 54, 33–39.
[51] Trebbi, G., Borghini, F., Lazzarato, L., Torrigiani, P., Calzoni, G. L. and Betti, L. (2007) Extremely Low Frequency Weak Magnetic Fields Enhance Resistance of NN Tobacco Plants to Tobacco Mosaic Virus and Elicit Stress-Related Biochemical Activities. Bioelectromagnetics, 28, 214-223. http://onlinelibrary.wiley.com/doi/10.1002/bem.20296/abstract http://dx.doi.org/10.1002/bem.20296
[52] Vallée, P., Lafait, J., Legrand, L., Mentré, P., Monod, M. O. and Thomas, Y. (2005) Effects of Pulsed Low-Frequency Electromagnetic Fields on Water Characterized by Light Scattering Techniques: Role of Bubbles. Langmuir, 21, 2293-2299. http://www.ncbi.nlm.nih.gov/pubmed/15752018 http://dx.doi.org/10.1021/la047916u
[53] Vallée, P., Lafait, J., Mentré, P., Monod, M. O. and Thomas, Y. (2005a) Effects of Pulsed Low-Frequency Electromagnetic Fields on Water Using Photoluminescence Spectroscopy: Role of Bubble/Water Interface. The Journal of Chemical Physics, 122, 114513-114521. http://dx.doi.org/10.1063/1.1860553
[54] Widom, A., Srivastava, Y. and Valenzi, V. (2010) The Biophysical Basis of Benveniste Experiments: Entropy, Structure and Information in Water. International Journal of Quantum Chemistry, 110, 252-256. http://onlinelibrary.wiley.com/doi/10.1002/qua.22140/abstract
[55] Yamashita, M., Duffield, C. A. and Tiller, W. A. (2003) Direct Current Magnetic Field and Electromagnetic Field Effects on the pH and Oxidation-Reduction Potential Equilibration Rates of Water. 1. Purified Water, Langmuir, 19, 6851-6856. http://pubs.acs.org/doi/abs/10.1021/la034506h http://dx.doi.org/10.1021/la034506h
[56] Zhao, L., Ma, K. and Yang, Z. (2015) Changes of Water Hydrogen Bond Network with Different Externalities. International Journal of Molecular Sciences, 16, 8454-8489. http://www.mdpi.com/1422-0067/16/4/8454 http://dx.doi.org/10.3390/ijms16048454
Cite This Article
  • APA Style

    Richard Lawrence Norman, Jeremy Dunning-Davies. (2017). The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology. American Journal of Modern Physics, 6(4-1), 17-28. https://doi.org/10.11648/j.ajmp.s.2017060401.12

    Copy | Download

    ACS Style

    Richard Lawrence Norman; Jeremy Dunning-Davies. The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology. Am. J. Mod. Phys. 2017, 6(4-1), 17-28. doi: 10.11648/j.ajmp.s.2017060401.12

    Copy | Download

    AMA Style

    Richard Lawrence Norman, Jeremy Dunning-Davies. The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology. Am J Mod Phys. 2017;6(4-1):17-28. doi: 10.11648/j.ajmp.s.2017060401.12

    Copy | Download

  • @article{10.11648/j.ajmp.s.2017060401.12,
      author = {Richard Lawrence Norman and Jeremy Dunning-Davies},
      title = {The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology},
      journal = {American Journal of Modern Physics},
      volume = {6},
      number = {4-1},
      pages = {17-28},
      doi = {10.11648/j.ajmp.s.2017060401.12},
      url = {https://doi.org/10.11648/j.ajmp.s.2017060401.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajmp.s.2017060401.12},
      abstract = {Biological systems are dependent upon and intertwined with aqueous systems. We will present empirically derived evidence of the unique properties of water and demonstrate the efficacious role of molecular electromagnetic informational encoding as mediated through aqueous dynamics and mnemic properties. Working theory will then be articulated from quantum, thermodynamic and Hadronic aspects. An aqueous molecular species of dynamic magnecule will then be defined. Implications are drawn which point to a possible nontoxic, purely informational potential for future medical and pharmacological science. Magnecules and aqueous informational magnecular dynamics may one day redefine energy storage and production, as well as medical practice.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology
    AU  - Richard Lawrence Norman
    AU  - Jeremy Dunning-Davies
    Y1  - 2017/09/26
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajmp.s.2017060401.12
    DO  - 10.11648/j.ajmp.s.2017060401.12
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 17
    EP  - 28
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.s.2017060401.12
    AB  - Biological systems are dependent upon and intertwined with aqueous systems. We will present empirically derived evidence of the unique properties of water and demonstrate the efficacious role of molecular electromagnetic informational encoding as mediated through aqueous dynamics and mnemic properties. Working theory will then be articulated from quantum, thermodynamic and Hadronic aspects. An aqueous molecular species of dynamic magnecule will then be defined. Implications are drawn which point to a possible nontoxic, purely informational potential for future medical and pharmacological science. Magnecules and aqueous informational magnecular dynamics may one day redefine energy storage and production, as well as medical practice.
    VL  - 6
    IS  - 4-1
    ER  - 

    Copy | Download

Author Information
  • Mind Magazine, Journal of Unconscious Psychology, O'Brien, USA

  • Departments of Mathematics and Physics, Institute for Basic Research, University of Hull, Florida, USA

  • Section