| Peer-Reviewed

Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method

Received: 30 December 2022    Accepted: 20 January 2023    Published: 14 February 2023
Views:       Downloads:
Abstract

This chemical reactivity theory study was conducted on ten (10) molecules of a series of dihydrothiophenone (DH) substituted by the quantum chemical method using density functional theory, at the B3LYP/6-31G (d, p) level. A set of global and local descriptors were used to assess the reactivity of the molecular systems. In addition, the most relevant quantum chemical descriptors for the action of the molecule as an inhibitor, such as the highest occupied molecular energy (EHOMO), the lowest vacant molecular orbital energy (ELUMO), the energy gap (ΔE), the dipole moment (μ), electronegativity (χ), overall hardness (η) and overall softness (Ѕ) on the heteroatoms were calculated. The analysis of the thermodynamic formation quantities confirmed the formation and existence of the studied series of molecules. The study of the boundary molecular orbitals provided a better overview of the molecular activities. The analysis of the global descriptors revealed that the DH1 molecule has the lowest value of energy gap. This lower gap allows it to be the most reactive (soft) and the least stable molecule. Also we note that it has the lowest hardness, but the highest softness. This indicates that it is the most electrophilic of all the compounds.

Published in Science Journal of Chemistry (Volume 11, Issue 1)
DOI 10.11648/j.sjc.20231101.12
Page(s) 10-17
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Chemical Reactivity, Global Descriptors, Local Descriptors

References
[1] Organisation Mondiale de la Santé, «OMS,» 06 Décembre 2021. [En ligne]. Available: https://www.who.int/fr/news-room/fact-sheets/detail/malaria#:~:text=Le%20paludisme%20est%20une%20maladie,de%20paludisme%20dans%20le%20monde.. [Accès le 2022 Décembre 28].
[2] M. Xu, J. Zhu, Y. Diao, H. Zhou, X. Ren, D. Sun, J. Huang, D. Han, Z. Zhao, L. Zhu, Y. Xu et H. Li, «Novel Selective and Potent Inhibitors of Malaria Parasite Dihydroorotate Dehydrogenase: Discovery and Optimization of Dihydrothiophenone Derivatives,» Journal of Medicinal Chemistry, vol. 56, n° %120, pp. 7911-7924, 2013.
[3] N. B. Patel et F. M. Shaikh, «New 4-Thiazolidinones of Nicotinic Acid with 2-Amino-6-methylbenzothiazole and their Biological Activity,» Sci. Pharm, vol. 78, p. 753, 2010.
[4] M. Kurt, T. R. Sertbakan et M. Ozduran, «Spectrochim, An experimental and theoretical study of molecular structure and vibrational spectra of 3-and 4-pyridineboronic acid molecules by density functional theory calculations,» Acta Part A: Mol. Biomol. Spectrosc., vol. 70, n° %13, pp. 664-673, 2008.
[5] K. V. Bohoussou, A. Benié, M. G. Koné, A. Kakou, K. Bamba et N. Ziao, «Theoretical Study of the Reaction of (2, 2)-Dichloro (Ethyl) Arylphosphine with Bis (2, 2)-Dichloro (Ethyl) Arylphosphine by Hydrophosphination Regioselective by the DFT Method,» Computational Chemistry, vol. 5, pp. 113-128, 2017.
[6] D. Soro, L. Ekou, M.-R. Koné, T. Ekou et N. Ziao, «DFT Study of Molecular Stability and Reactivity on Some Hydroxamic Acids: An Approach by Hirshfeld Population Analysis,» EJERS, European Journal of Engineering Research and Science, vol. 4, n° %12, pp. 45-49, 2019.
[7] N. T. Tuo, G. S. Dembele, D. Soro, F. Konate, B. Konate, C. Kodjo et N. Ziao, «Theoretical Study of the Chemical Reactivity of a Series of 2, 3-Dihydro-1H-Perimidine,» International Research Journal of Pure & Applied Chemistry, vol. 23, n° %11, pp. 13-25, 2022.
[8] T. Mineva et T. Heine, «Efficient computation of orbitally resolved hardness and softness within density functional theory,» J. Phys. Chem. A., vol. 108, pp. 11086-11091, 2004.
[9] R. K. Roy et S. Saha, «Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors,» Annual Reports Section "C" (Physical Chemistry), vol. 106, pp. 118-162, 2010.
[10] S. Saha et R. K. Roy, «One-into-many” model: an approach on DFT based reactivity descriptor to predict the regioselectivity of large systems,» The Journal of Physical Chemistry B, vol. 111, n° %132, pp. 9664-9674, 2007.
[11] C. Lee, W. Yang et R. Parr, «Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,» Physical Review Journals, vol. B37, p. 785, 1988.
[12] B. D. Axel, «Density-functional thermochemistry III. The role of exact exchange,» Journal of Chemical Physics, vol. 98, p. 5648, 1993.
[13] A. L. Bédé, A. B. Assoma, K. D. Yapo, M. G.-R. Koné, S. Koné, M. Koné, B. N’Guessan et E.-H. S. Bamba, «Theoretical Study by Density Functional Theory Method (DFT) of Stability, Tautomerism, Reactivity and Prediction of Acidity of Quinolein-4-One Derivatives,» Computational Chemistry, vol. 6, pp. 57-70, 2018.
[14] Gaussian 09, Revision A. 02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[15] N. T. Tuo, B. Ouattara, M. G. R. Kone, G. S. Dembele, D. Soro, F. Konate et N. Ziao, «Theoretical Study of Reactivity and Stability of a Thiazoline Derivative Series by the Density Functional.
[16] R. G. Parr et W. Yang, «Density-functional theory of the electronic structure of molecules,» Annual Review Physical Chemistry, vol. 46, pp. 701-728, 1995.
[17] M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald et A. N. Syverud, «JANAF Thermochemical Tables,» J. Phys. Ref., vol. 14, n°11, 1985.
[18] T. Koopmans, «Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms,» Physica, vol. 1, n° %11-6, pp. 104-113, 1993.
[19] P. K. Chattaraj et B. Maiti, «Reactivity dynamics in atom− field interactions: a quantum fluid density functional study,» The Journal of Physical Chemistry A, vol. 105, n° %11, pp. 169-183, 2001.
[20] R. G. Parr, L. V. Szentpály et S. Liu, «Electrophilicity index,» Journal of the American Chemical Society, vol. 121, n° %19, pp. 1922-1924, 1999.
[21] P. W. Ayers et M. Levy, «Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity,» Theoretical Chemistry Accounts, vol. 103, n° %13, pp. 353-360, 2000.
[22] W. Yang et W. J. Mortier, «The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines,» Journal of the American Chemical Society, vol. 108, n° %119, pp. 5708-5711, 1986.
Cite This Article
  • APA Style

    Fandia Konate, Kadjo François Kassi, Georges Stephane Dembele, Chiepi Nadege Dominique Dou, Bibata Konaté, et al. (2023). Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method. Science Journal of Chemistry, 11(1), 10-17. https://doi.org/10.11648/j.sjc.20231101.12

    Copy | Download

    ACS Style

    Fandia Konate; Kadjo François Kassi; Georges Stephane Dembele; Chiepi Nadege Dominique Dou; Bibata Konaté, et al. Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method. Sci. J. Chem. 2023, 11(1), 10-17. doi: 10.11648/j.sjc.20231101.12

    Copy | Download

    AMA Style

    Fandia Konate, Kadjo François Kassi, Georges Stephane Dembele, Chiepi Nadege Dominique Dou, Bibata Konaté, et al. Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method. Sci J Chem. 2023;11(1):10-17. doi: 10.11648/j.sjc.20231101.12

    Copy | Download

  • @article{10.11648/j.sjc.20231101.12,
      author = {Fandia Konate and Kadjo François Kassi and Georges Stephane Dembele and Chiepi Nadege Dominique Dou and Bibata Konaté and Doh Soro and Guy-Richard Mamadou Kone and Nahosse Ziao},
      title = {Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method},
      journal = {Science Journal of Chemistry},
      volume = {11},
      number = {1},
      pages = {10-17},
      doi = {10.11648/j.sjc.20231101.12},
      url = {https://doi.org/10.11648/j.sjc.20231101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20231101.12},
      abstract = {This chemical reactivity theory study was conducted on ten (10) molecules of a series of dihydrothiophenone (DH) substituted by the quantum chemical method using density functional theory, at the B3LYP/6-31G (d, p) level. A set of global and local descriptors were used to assess the reactivity of the molecular systems. In addition, the most relevant quantum chemical descriptors for the action of the molecule as an inhibitor, such as the highest occupied molecular energy (EHOMO), the lowest vacant molecular orbital energy (ELUMO), the energy gap (ΔE), the dipole moment (μ), electronegativity (χ), overall hardness (η) and overall softness (Ѕ) on the heteroatoms were calculated. The analysis of the thermodynamic formation quantities confirmed the formation and existence of the studied series of molecules. The study of the boundary molecular orbitals provided a better overview of the molecular activities. The analysis of the global descriptors revealed that the DH1 molecule has the lowest value of energy gap. This lower gap allows it to be the most reactive (soft) and the least stable molecule. Also we note that it has the lowest hardness, but the highest softness. This indicates that it is the most electrophilic of all the compounds.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study of the Chemical Reactivity of a Series of Dihydrothiophenone Derivatives by the Density Functional Theory (DFT) Method
    AU  - Fandia Konate
    AU  - Kadjo François Kassi
    AU  - Georges Stephane Dembele
    AU  - Chiepi Nadege Dominique Dou
    AU  - Bibata Konaté
    AU  - Doh Soro
    AU  - Guy-Richard Mamadou Kone
    AU  - Nahosse Ziao
    Y1  - 2023/02/14
    PY  - 2023
    N1  - https://doi.org/10.11648/j.sjc.20231101.12
    DO  - 10.11648/j.sjc.20231101.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 10
    EP  - 17
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20231101.12
    AB  - This chemical reactivity theory study was conducted on ten (10) molecules of a series of dihydrothiophenone (DH) substituted by the quantum chemical method using density functional theory, at the B3LYP/6-31G (d, p) level. A set of global and local descriptors were used to assess the reactivity of the molecular systems. In addition, the most relevant quantum chemical descriptors for the action of the molecule as an inhibitor, such as the highest occupied molecular energy (EHOMO), the lowest vacant molecular orbital energy (ELUMO), the energy gap (ΔE), the dipole moment (μ), electronegativity (χ), overall hardness (η) and overall softness (Ѕ) on the heteroatoms were calculated. The analysis of the thermodynamic formation quantities confirmed the formation and existence of the studied series of molecules. The study of the boundary molecular orbitals provided a better overview of the molecular activities. The analysis of the global descriptors revealed that the DH1 molecule has the lowest value of energy gap. This lower gap allows it to be the most reactive (soft) and the least stable molecule. Also we note that it has the lowest hardness, but the highest softness. This indicates that it is the most electrophilic of all the compounds.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Environment, UFR SFA, NANGUI ABROGOUA University, Abidjan, Ivory Coast

  • Sections