Research Article | | Peer-Reviewed

Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect

Received: 9 August 2024     Accepted: 9 September 2024     Published: 11 September 2024
Views:       Downloads:
Abstract

In the process of oil well production, the deposition and enrichment of heavy oil and wax are common phenomena. The deposition of these high-viscosity organic substances will not only seriously affect the normal production of oil wells but also cause certain pollution to the environment. Traditional well-washing operations usually rely on high temperatures and strong cleaning chemicals, which have the problems of low cleaning efficiency at low temperatures and poor environmental protection. Therefore, it is particularly important to study a more efficient and environmentally friendly water-based well-washing fluid. At present, most oilfields in China use diesel or organic cleaning agents to clean oil wells, which not only increases the cost of well-washing operations but also may cause pollution to the environment. In response to this problem, the core of this study lies in its innovative compounding scheme. The scheme includes preferred alkaline components, surfactants, emulsifiers, and solubilizers, and introduces glass fiber cutting and erosion technology. This well-washing fluid can effectively remove wax and heavy oil attached to the well wall at a lower temperature, which not only improves cleaning ability but also greatly reduces the dependence on high temperature. The water-based well-washing fluid provided in this study is composed of water, alkaline substances, surfactants, emulsifiers, and glass fibers. Emulsifiers such as Tween 80, OP-20, and polyethers form a stable emulsification system to help disperse and encapsulate oil and grease particles.

Published in Science Discovery (Volume 12, Issue 5)
DOI 10.11648/j.sd.20241205.11
Page(s) 109-113
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Water-Based Well Cleaning Fluid, Heavy Oil, Low Temperature Cleaning, High Efficiency

1.引言
油井生产中稠油和蜡在井筒沉积富集是常见的问题,这些高粘度有机质的沉积会严重影响油井的正常生产,因此需要定期进行洗井作业。我国大多数油田通常采用柴油或有机清洗剂对油井进行清洗,不仅会增大洗井作业的费用,还会对环境造成一定的污染。因此,需研究更加高效的水基洗井液以满足油井洗井作业的要求。通过调研可知,目前环保型清洗稠油常用的解决方法包含两种,一种是洗油剂利用乳化的方法将有机溶剂分散于水基洗油剂中,另外一种方法是采用大量的表明活性剂、乳化剂、碱组成的纯水基洗井液。但是第一种方法不满足环保要求,第二种方法虽然采用了纯水基体系,但是清洗效率有待进一步提高,并且通过前期研究发现,需要加热至稠油液化温度才能实现清洗。
传统的洗井作业通常依赖于高温和强清洗性化学品,存在低温清洗效率低,环保性差的问题。本研究的核心在于其创新的复配方案,包括优选的碱性成分、表面活性剂、乳化剂和增溶剂,并引入玻璃纤维切蚀,这一洗井液能够在更低的温度下有效去除井壁附着的蜡和稠油,不仅提高了清洁能力,还大大降低了对高温的依赖。在降低5-15°C的加热温度下,即可达到95%及以上的清洗效果,这对于油田的可持续发展具有重大意义。
2.水基洗井液的组成与作用机理
本研究提供的水基洗井液,其有效成分由水、碱性物质、表面活性剂、乳化剂和玻璃纤维组成。其中,碱性物质用于提供碱性环境以软化和分解有机垢;表面活性剂降低油水界面的表面张力,增强清洗效果;乳化剂形成稳定的乳化体系,帮助分散和包裹油脂颗粒;玻璃纤维则通过物理切蚀作用辅助清洗。这种复合作用机理使得本研究提供的水基洗井液在低温条件下也能高效清洗有机垢。
在水基洗井液的配方中,碱性物质的选择至关重要。在本研究中,优选的碱性物质为硅酸钠和三聚磷酸钠,这些物质不仅能有效地提供碱性环境,软化和分解有机垢,还具有低毒性、生物降解性好的优点,减少了对环境的潜在危害
表面活性剂的选择同样重要。本研究中使用的十二烷基硫酸钠和十二烷基苯磺酸钠等表面活性剂,通过降低油水界面的表面张力,使得油脂颗粒更易于分散和被水基洗井液包裹,从而增强清洗效果。这些表面活性剂的选择兼顾了清洗效能和对环境的安全性。
乳化剂的添加是为了形成稳定的乳化体系,以进一步提高洗井液的清洗能力。本研究采用的吐温80、OP-20以及HLB值大于16的聚氧乙烯聚氧丙烯嵌段共聚物(聚醚),有效促进了油脂颗粒的乳化和分散,提高了清洗效率
除了化学清洗成分外,本研究的一大创新在于引入了玻璃纤维的物理切蚀作用。这些以特定长度(3mm)切割的玻璃纤维,通过机械切蚀的方式辅助化学成分,提升了对沉积物的清洗效能。鉴于纤维会影响清洗剂的泵注性能,并且纤维过长会出现打结的情况,因此不选择的长度更长的纤维。玻璃纤维的物理作用在不增加化学反应副产品的情况下,提供了一种独特的清洗机制,是该水基洗井液高效作业的关键。
3.实验材料及方法
3.1.实验材料
表1 实验材料 试验采用的原材料均为常用表面活性剂和乳化剂。

药品名称

HLB值

水溶性

含量

硫酸盐

15.0

良好

99%

磺酸盐

16.0

良好

99%

吐温80

15.0

良好

99%

OP-20

16.0

良好

99%

平平加O-25

16.5

较差

99%

聚醚

16.6

良好

99%

3mm玻璃纤维

/

不溶

99%

稠油(45°C粘度7560mp•s)

/

/

/

3.2.实验方法
利用旋转粘度计,基于物料平衡差减法,能够较准确测定清洗效率。实验步骤如下:
(1)对干净的六速旋转粘度计的转筒称重,记为W0;
(2)将稠油涂抹到旋转黏度计转筒壁上,静置2 min,再对转筒称重,记为W1;
(3)对转筒进行冲洗,在45°C下以150r/min的转速冲洗转筒10分钟;
(4)冲洗完毕后,自然风干5-10 min后取下转筒,对转筒称重,记为W2;
(5)冲洗效率记为η,计算公式为:η=[(转筒与附着的稠油质量和-冲洗后残留的质量)/(转筒与附着的稠油质量和-转筒质量)]×100%=[(W1-W2)/(W1-W0)]×100%
4.管壁附着稠油冲洗实验结果分析与讨论
4.1.碱优选研究
首先优选性能良好的碱作为冲洗剂的主剂之一,根据冲洗实验结果进行优选。设计不同组分、不同质量分数的冲洗剂配方如下:
(1)5%硅酸钠;(2)7.5%硅酸钠;(3)10%硅酸钠;(4)5%磷酸钠;(5)7.5%磷酸钠;(6)10%磷酸钠
实验结果如下表2所示。
表2 不同碱作用下稠油清洗效率。

序号

W0/g

W1/g

W2/g

η/%

1

143.72

144.6

144.59

1.14

2

143.70

144.69

144.68

1.01

3

143.72

144.65

144.36

31.18

4

143.68

144.67

144.40

27.27

5

143.72

144.65

144.22

46.24

6

143.68

144.65

144.09

57.73

从表中可以看出,硅酸钠和磷酸钠对稠油的清洗效率都随质量分数的增加而增加。但相同质量分数下,加入硅酸钠的清洗效率较加入磷酸钠的低,且序号为6的配方下其清洗效率最高,可达到57.73%,故在后续实验中加入表面活性剂以增强清洗效果
4.2.表面活性剂优选研究
保持磷酸钠加量为7.5%,根据冲洗实验结果对表明活性剂进行优选。设计不同组分、不同质量分数的冲洗剂配方如下:
(1)10%苯磺酸;(2)15%苯磺酸;(3)20%苯磺酸;(4)10%硫酸盐;(5)15%硫酸盐;(6)20%硫酸盐
实验结果如下表3所示。
表3 不同表明活性剂作用下稠油清洗效率。

序号

W0/g

W1/g

W2/g

η/%

1

143.67

144.73

143.92

76.42

2

143.65

144.63

143.88

76.53

3

143.65

144.82

144.05

65.81

4

143.66

144.75

143.88

80.39

5

143.61

144.63

143.81

79.82

6

143.66

144.73

143.81

85.98

从表中可以看出,硫酸盐和苯磺酸盐对稠油的清洗效率不在随着加量的增加而增加,表明表面活性剂存在最优加量。但相同质量分数下(20%),硫酸钠对稠油清洗效率可达85%以上,故在后续实验中加入硫酸盐作为表面活性剂。
4.3.乳化剂优选研究
在上述实验确立的基础配方条件下,设计不同组分、不同质量分数的清洗剂配方如下:本研究采用的吐温80、OP-20以及HLB值大于16的聚氧乙烯聚氧丙烯嵌段共聚物(聚醚)
(1)7.5%磷酸钠+20%硫酸盐+2.5%吐温80
(2)7.5%磷酸钠+20%硫酸盐+2.5% OP-20
(3)7.5%磷酸钠+20%硫酸盐+2.5%平平加O-25
(4)7.5%磷酸钠+20%硫酸盐+2.5%聚醚
实验结果如下表4所示。
表4 不同乳化剂作用下稠油清洗效率。

序号

W0/g

W1/g

W2/g

η/%

1

143.67

144.74

143.87

81.31

2

143.56

144.68

143.70

87.50

3

143.56

144.62

143.70

86.79

4

143.56

144.67

143.73

84.68

从表中可以看出,吐温80和聚醚的加入使稠油清洗效率降低,OP-20和平平加O-20使稠油清洗效率增加,其中加入OP-20的清洗效率最高,可达到87.50%,表明OP-20可增强清洗剂的乳化作用,对清洗钻井液起积极作用
4.4.玻璃纤维加量优化研究
在上述实验确立的基础配方条件下,设计不同质量分数的玻璃纤维加量下清洗剂配方如下:
(1)7.5%磷酸钠+20%硫酸盐+2.5% OP-20+0.50%玻璃纤维
(2)7.5%磷酸钠+20%硫酸盐+2.5% OP-20+0.75%玻璃纤维
(3)7.5%磷酸钠+20%硫酸盐+2.5% OP-20+1.00%玻璃纤维
(4)7.5%磷酸钠+20%硫酸盐+2.5% OP-20+1.25%玻璃纤维
实验结果如表5所示。
表5 不同加量玻璃纤维作用下稠油清洗效率。

序号

W0/g

W1/g

W2/g

η/%

1

143.56

144.58

143.65

91.17

2

143.56

144.63

143.61

95.33

3

143.57

144.58

143.74

83.17

4

143.56

144.56

143.74

82.00

从表中可以看出,随着玻璃纤维加量的增加,稠油清洗效率先增加然后逐渐降低,分析原因,玻璃纤维的加入虽然具有一定物理清洗的效果,但是同时玻璃纤维的加入也会吸附消耗表面活性剂和乳化剂,所以当加量继续增加时会显著降低稠油清洗效率,根据实验结果,确定玻璃纤维最优加量为0.75%。因此确定最优稠油清洗剂配方为:7.5%磷酸钠+20%硫酸盐+2.5% OP-20+0.75%玻璃纤维。采用此配方,在45°C条件下,稠油的清洗效率可高达95%。
5.结论与展望
本研究通过科学复配与技术创新成功研制出一种新型水基洗井液。该洗井液不仅能在低温下实现高效清洗还具备良好的环保性能为油田的可持续发展提供了有力保障。未来我们将继续优化洗井液的配方与工艺探索更多创新性的清洗技术以期为油田开采提供更加高效、环保的解决方案。同时我们也期待与业界同仁加强交流与合作共同推动油田清洗技术的进步与发展。
稠油清洗剂优化研究在石油开采过程中,稠油沉积是一个常见问题,它不仅会堵塞井筒,严重影响生产效率,还增加了清理难度和成本。为了应对这一挑战,本研究致力于开发一种高效、环保且成本效益显著的稠油清洗剂。通过一系列精心设计的实验,我们系统地优化了清洗剂中的关键成分,包括碱、表面活性剂、乳化剂以及辅助添加剂,最终确定了最佳配方。
(1)碱类成分的优化
首先,我们聚焦于碱类成分的选择与优化。实验表明,硅酸钠和磷酸钠均能有效提升稠油的清洗效率,且其效果随质量分数的增加而增强。然而,在相同质量分数下,硅酸钠的清洗效率明显低于磷酸钠。特别地,当磷酸钠的质量分数达到10%时,清洗效率达到了一个显著的高点,约为57.73%。尽管如此,这一效率仍不足以满足实际生产需求。因此,我们决定在后续实验中引入表面活性剂,以进一步提升清洗效果。
(2)表面活性剂的优选
在保持磷酸钠加量为7.5%的基础上,我们进行了表面活性剂的优选研究。通过对比苯磺酸和硫酸盐两类表面活性剂,我们发现它们的清洗效率并不总是随着加量的增加而线性增长,这提示我们存在最优加量的问题。进一步分析显示,在20%的质量分数下,硫酸盐对稠油的清洗效率高达85%以上,显著优于苯磺酸。因此,我们决定将硫酸盐作为首选表面活性剂,并继续探索其在清洗剂中的最佳应用。
乳化剂的加入与优化为了进一步提升清洗剂的效能,我们引入了乳化剂这一关键成分。在已确定的基础配方(7.5%磷酸钠+20%硫酸盐)上,我们设计了多种乳化剂配方,包括吐温80、OP-20、平平加O-25以及高HLB值的聚氧乙烯聚氧丙烯嵌段共聚物(聚醚)。实验结果显示,加入乳化剂后,清洗效率均有所提升,其中OP-20的表现尤为突出,其清洗效率达到了87.50%。这一结果不仅验证了乳化剂在增强清洗剂乳化作用方面的有效性,也为后续配方的优化提供了有力支持。
(3)玻璃纤维加量的优化在确定了主要成分后,我们进一步研究了玻璃纤维作为辅助添加剂对清洗效果的影响。通过设计不同质量分数的玻璃纤维加量配方,我们发现随着玻璃纤维加量的增加,稠油清洗效率先增后减。这一现象的原因在于,虽然玻璃纤维的加入能够带来一定的物理清洗效果,但同时也会吸附并消耗表面活性剂和乳化剂,从而降低整体清洗效率。经过反复实验和数据分析,我们最终确定了玻璃纤维的最优加量为0.75%。
(4)最佳配方的确定与验证
综合以上研究成果,我们确定了稠油清洗剂的最佳配方为:7.5%磷酸钠+20%硫酸盐+2.5% OP-20+0.75%玻璃纤维。为了验证该配方的实际效果,我们在45°C条件下进行了稠油清洗实验。实验结果显示,采用该配方后,稠油的清洗效率高达95%以上,洗油效果非常显著。这一结果不仅证明了该配方的高效性,还表明其能够在较低温度下进行洗井作业,减少了对高温环境的依赖。
(5)结论
本研究通过单因素迭代研究的方法,对稠油清洗剂中的碱、表面活性剂、乳化剂和玻璃纤维等关键成分进行了系统优化。最终开发出的稠油清洗剂配方不仅清洗效率高、原料易得且环保,还能够在较低温度下进行洗井作业,具有重要的实际应用价值。未来,我们将继续探索该配方的长期稳定性和经济性,以期在石油开采领域得到更广泛的应用和推广。
References
[1] 石闯军, 杨述, 白会彦. 油井修井作业中洗井液配方的优化与应用 [J]. 石化技术, 2023, 30(03): 63-65.
[2] 于庆龙.三元洗井液预处理技术室内实验研究 [J]. 油气田地面工程, 2023, 42(02): 54-57.
[3] 郭磊, 王尤富. 新型环保洗井液评价及利用 [J]. 辽宁化工, 2022, 51(02): 277-280.
[4] 李晓亮, 苏延辉, 江安. 解堵型注水井洗井液体系研发与评价 [J]. 辽宁化工, 2021, 50(08): 1225-1227.
[5] 邱小华, 李文涛, 谭才渊, 等. 高效洗井液在渤海某油田修井中的应用 [J]. 石化技术, 2020, 27(11): 122-123.
[6] 卢兴国. 新型高效洗井液体系研究及性能评价 [J]. 能源化工, 2020, 41(05): 63-66.
[7] 唐洪明, 朱柏宇, 龚小平, 等. 疏松砂岩稠油油藏油井产能下降潜在因素分析[J]. 油气藏评价与开发, 2017, 7(6): 42-48.
[8] 吴江, 周颉来, 袁海青, 等. 渤海重质稠油油田浅层油井采油方式评价 [J]. 中国石油和化工, 2013(5): 55-56.
[9] 李成荣, 李华君, 张宗晓, 等. 油井高效清洗剂的研究与应用[J]. 内蒙古石油化工, 2003, 29(3): 141-143.
[10] 常振, 郭宏峰, 李翔, 等. 复合高效洗井液在渤海油田的研究和应用 [J]. 内蒙古石油化工, 2016, 42(3): 8-10.
[11] 邢希金, 曹砚锋, 郭宏峰, 等. 渤海稠油油藏洗井液的研制、评价及应用 [J]. 精细石油化工进展, 2019, 20(1): 5-9.
[12] 李蔚萍, 向兴金, 舒福昌, 等. 高效环保型水基洗井液室内研究与性能评价 [J]. 精细石油化工进展, 2007, 8(10): 5-8.
[13] 甄建兵, 谷胜群, 王尤富, 等. 清洁环保洗井液的性能评价及现场应用 [J]. 长江大学学报(自然科学版), 2019, 16(5): 20-22.
[14] 李蔚萍, 向兴金, 崔应中, 等. 针对SZ36-1油田稠油的柴油基洗井液的制备及性能评价 [J]. 精细石油化工进展, 2008, 9(8): 1-4.
[15] 周默, 文守成, 王佰漫. 无污染洗井液体系研制及评价 [J]. 中国石油和化工标准与质量, 2014(9): 81.
[16] 赵宏波, 贾进孝, 孟令涛, 等. 一种新型降水锁洗井液NDF-1的性能评价及现场试验 [J]. 石油钻探技术, 2015, 43(6): 87-92.
[17] 刘磊, 郭宏峰, 刘文辉, 等. 解堵型循环洗井液的构建与应用 [J]. 化学与生物工程, 2019, 36(7): 43-46, 64.
Cite This Article
  • APA Style

    Dong, Y., Yongqiang, R., Zhihong, W., Binbin, H., Al-farzai, A. A. S. A., et al. (2024). Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect. Science Discovery, 12(5), 109-113. https://doi.org/10.11648/j.sd.20241205.11

    Copy | Download

    ACS Style

    Dong, Y.; Yongqiang, R.; Zhihong, W.; Binbin, H.; Al-farzai, A. A. S. A., et al. Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect. Sci. Discov. 2024, 12(5), 109-113. doi: 10.11648/j.sd.20241205.11

    Copy | Download

    AMA Style

    Dong Y, Yongqiang R, Zhihong W, Binbin H, Al-farzai AASA, et al. Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect. Sci Discov. 2024;12(5):109-113. doi: 10.11648/j.sd.20241205.11

    Copy | Download

  • @article{10.11648/j.sd.20241205.11,
      author = {Yang Dong and Ren Yongqiang and Wei Zhihong and He Binbin and Adnan Ahmed Saleh Ahmed Al-farzai and Liu Huajie},
      title = {Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect
    },
      journal = {Science Discovery},
      volume = {12},
      number = {5},
      pages = {109-113},
      doi = {10.11648/j.sd.20241205.11},
      url = {https://doi.org/10.11648/j.sd.20241205.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20241205.11},
      abstract = {In the process of oil well production, the deposition and enrichment of heavy oil and wax are common phenomena. The deposition of these high-viscosity organic substances will not only seriously affect the normal production of oil wells but also cause certain pollution to the environment. Traditional well-washing operations usually rely on high temperatures and strong cleaning chemicals, which have the problems of low cleaning efficiency at low temperatures and poor environmental protection. Therefore, it is particularly important to study a more efficient and environmentally friendly water-based well-washing fluid. At present, most oilfields in China use diesel or organic cleaning agents to clean oil wells, which not only increases the cost of well-washing operations but also may cause pollution to the environment. In response to this problem, the core of this study lies in its innovative compounding scheme. The scheme includes preferred alkaline components, surfactants, emulsifiers, and solubilizers, and introduces glass fiber cutting and erosion technology. This well-washing fluid can effectively remove wax and heavy oil attached to the well wall at a lower temperature, which not only improves cleaning ability but also greatly reduces the dependence on high temperature. The water-based well-washing fluid provided in this study is composed of water, alkaline substances, surfactants, emulsifiers, and glass fibers. Emulsifiers such as Tween 80, OP-20, and polyethers form a stable emulsification system to help disperse and encapsulate oil and grease particles.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Research on the Compounding Scheme of High-Efficiency and Environmentally Friendly Water-Based Well Cleaning Fluid and Analysis of Its Application Effect
    
    AU  - Yang Dong
    AU  - Ren Yongqiang
    AU  - Wei Zhihong
    AU  - He Binbin
    AU  - Adnan Ahmed Saleh Ahmed Al-farzai
    AU  - Liu Huajie
    Y1  - 2024/09/11
    PY  - 2024
    N1  - https://doi.org/10.11648/j.sd.20241205.11
    DO  - 10.11648/j.sd.20241205.11
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 109
    EP  - 113
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20241205.11
    AB  - In the process of oil well production, the deposition and enrichment of heavy oil and wax are common phenomena. The deposition of these high-viscosity organic substances will not only seriously affect the normal production of oil wells but also cause certain pollution to the environment. Traditional well-washing operations usually rely on high temperatures and strong cleaning chemicals, which have the problems of low cleaning efficiency at low temperatures and poor environmental protection. Therefore, it is particularly important to study a more efficient and environmentally friendly water-based well-washing fluid. At present, most oilfields in China use diesel or organic cleaning agents to clean oil wells, which not only increases the cost of well-washing operations but also may cause pollution to the environment. In response to this problem, the core of this study lies in its innovative compounding scheme. The scheme includes preferred alkaline components, surfactants, emulsifiers, and solubilizers, and introduces glass fiber cutting and erosion technology. This well-washing fluid can effectively remove wax and heavy oil attached to the well wall at a lower temperature, which not only improves cleaning ability but also greatly reduces the dependence on high temperature. The water-based well-washing fluid provided in this study is composed of water, alkaline substances, surfactants, emulsifiers, and glass fibers. Emulsifiers such as Tween 80, OP-20, and polyethers form a stable emulsification system to help disperse and encapsulate oil and grease particles.
    
    VL  - 12
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

    Biography: 杨东,1982年7月出生,男,汉族,河北省沧州市黄骅县,工程师,本科,2012年毕业于西南石油大学石油工程专业,主要从事油气田试油、试气技术管理工作。

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China

  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China

  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China

  • Table 1

    表1 实验材料 试验采用的原材料均为常用表面活性剂和乳化剂。

  • Table 2

    表2 不同碱作用下稠油清洗效率。

  • Table 3

    表3 不同表明活性剂作用下稠油清洗效率。

  • Table 4

    表4 不同乳化剂作用下稠油清洗效率。

  • Table 5

    表5 不同加量玻璃纤维作用下稠油清洗效率。