Research Article | | Peer-Reviewed

Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage

Received: 14 May 2024     Accepted: 16 June 2024     Published: 20 August 2024
Views:       Downloads:
Abstract

In the production process of oil and gas fields, for old wells, sealed wells, etc., if the bridge plug or packer is inserted into the well for a long time, the sealing cylinder will harden under the high-temperature and high-pressure environment of the wellbore. The sealing cylinder cannot contract normally and tightly adhere to the inner wall of the casing. During the tool unsealing and lifting process, impurities such as scale and rust on the casing wall will be scraped off and continuously accumulated, ultimately causing the bridge plug or packer to jam and unable to successfully complete the tool unsealing and salvage. During construction, the method of repeatedly moving the pipe column and suspending it is usually used for unblocking, and nitrogen gas lifting and lowering liquid construction is added, but the results are not ideal. During the process of moving the tubing, fatigue damage to the tubing increases the risk of well control and complex wellbore conditions, while significantly prolonging the construction period and increasing construction costs. Therefore, it is urgent to develop a degradation and ablation agent for hardened rubber parts, which can degrade and soften the hardened rubber cylinder, ensuring the smooth operation of tool salvage. Rubber products obtained through normal cross-linking reactions exhibit a regular grid like molecular structure, which can resist the invasion of organic molecules and oxidant molecules. This is also the reason why rubber products are resistant to organic solvents and acid-base corrosion. The experiment proposes to use a combination of "dissolution" and "destruction" methods to soften and melt the excessively cross-linked and hardened rubber cylinder.

Published in Science Discovery (Volume 12, Issue 4)
DOI 10.11648/j.sd.20241204.13
Page(s) 89-93
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bridge Plug Fishing, Packer Unsealing, Hardening of Rubber Parts, Ablation Agent, Degradation Softening

1.前言
油气田生产过程中的老井、封堵井等,如果井内桥塞及封隔器入井时间较长,在井筒高温高压环境下,其密封胶筒均会发生硬化甚至碳化的现象[1, 2],胶筒无法正常收缩并紧贴套管内壁,工具解封上提过程中会将套管壁上的水垢、铁锈等杂质“刮削”下来并不断积累,最终造成桥塞或封隔器卡阻无法正常解封打捞,施工过程中出现反复活动管柱及悬吊解卡造成油管疲劳受损,增加了井筒复杂情况风险的同时,大幅延长施工周期[3, 4]。急待开发一种橡胶件降解消融剂,将碳化的胶筒降解软化,保证工具打捞的顺利进行。
2.胶筒硬化原理分析
2.1.橡胶的常规交联
天然橡胶分子链很长,在炼制前成自然排列状态。炼制时向其中加入了单质硫,硫原子将天然橡胶分子“连接”起来形成了网状结构(如图1)。硫原子在这里起交联作用,是其周围橡胶分子的交联中心[5]。交联反应温度130-150°C,反应时间45-60min,最后在模具中加压制成胶筒。
图1 橡胶的常规交联示意图。
2.2.橡胶的过度交联
在加入单质硫进行交联过程中,单质硫是过量的,如果制成的胶筒被再次至于超过130°C的环境中,橡胶分子会进一步交联,造成过度交联,其硬度和脆性均会上升[6]。
对于常规地温梯度的地层,当深度达到4000m左右时,其温度即可达到130°C左右,冀中地区的潜山井,储气库等井储层深度在4000-6000m之间,该深度下的封隔器或桥塞其胶筒即会出现“硬化”的现象[7]。这也是该类井中的桥塞或封隔器解封打捞困难的根本原因。
3.实验方案优选
3.1.橡胶耐腐蚀原理
正常交联反应得到的橡胶制品,其分子结构呈现规则的网格状(如图2),可抵御有机分子及氧化剂分子的“侵入”,这也是橡胶制品耐有机溶剂和酸碱腐蚀的原因[8]。
图2 交联后均匀紧密的橡胶分子网络示意图。
3.2.“薄弱点”的形成
橡胶的过度交联造成了其硬度和脆性的上升,但同时其微观分子的规则网格结构形态也遭到了破坏,即原来橡胶分子正常交联形成的均匀网格发生局部断裂,形成许多分子级的“薄弱点”(如图3),这就给“消融剂”分子的侵入创造了机会与有利条件[9]。
图3 均匀橡胶分子交联网格发生局部断裂形成“侵蚀薄弱点”示意图。
3.3.消融剂作用途径的拟定
试验拟定采用“溶解”与“破坏”相结合的方法将过度交联硬化的胶筒进行软化消融。“溶解”即让有机溶剂从“薄弱点”侵入橡胶内部,将部分橡胶分子溶解。“破坏”即让强氧化剂从“薄弱点”侵入橡胶内部,与硫原子反应,即把硫原子“消耗”掉,使硫原子失去原有的交联作用从而“破坏”橡胶分子间的网格结构,最终达到软化橡胶的目的[10]。
4.消融剂组分优选及室内实验
4.1.消融剂组分优选
试验通过有机溶剂与强氧化剂混配制得消融剂。有机溶剂从“醚、酮、醇、酯、苯”类溶剂中进行优选,从“薄弱点”侵入橡胶内部,起“溶解作用”。试验指定了三种强氧化剂,从“薄弱点”侵入橡胶内部,把硫原子“消耗”掉,起“破坏作用”[11]。
4.2.室内实验
将不同种类的有机溶剂和强氧化剂分别进行混配,形成不同组分的消融剂,共计15种消融剂体系。试验通过消融剂浸泡硬化橡胶同时使用水浴加热的方法模拟井筒环境,检验各类消融剂的效果[12]。试验筛选出两种有效的消融剂体系(见表1)。
表1 不同组分的消融剂实验效果。

有机溶剂

强氧化剂

筛选方式

有效组合体系

实验结果

YJ-1

YH-1

将不同的有机溶剂与强氧化剂分别进行混配,形成15种消融剂体系,并分别置于100°C的恒温环境下,与硬化的胶筒进行反应。

YJ-3与YH-2

2小时胶筒表面开始软化,4小时软化部分向胶筒深部拓展,8小时胶筒彻底软化

YJ-2

YH-2

YJ-4与YH-2

12小时胶筒表面出现一层软化层后无变化

YJ-3

YH-3

/

通过实验观察,其他组合方式制备的消融剂对橡胶的软化降解作用非常微弱

YJ-4

/

/

YJ-5

/

/

经实验确定最优消融剂体系组合为YJ-3有机溶剂+YH-2氧化剂,2小时胶筒表面开始软化,4小时软化部分向胶筒深部拓展,8小时胶筒彻底软化(如图4)。
图4 消融剂与硬化胶筒实验图。
4.3.消融剂耐腐蚀实验
参照《SY-T5405-1996酸化用缓蚀剂性能试验方法及评价指标》,采用FS-Ⅱ型高温高压腐蚀仪,检测消融剂对N80钢片的腐蚀能力(见表2)。
表2 消融剂对N80钢片的腐蚀能力实验。

编号

温度 °C

腐蚀介质

腐蚀时间/ h

蚀前重/ g

蚀后重/g

腐蚀速度 g/㎡h

1

120

消融剂

12

10.779

10.774

0.005

2

120

消融剂

12

10.761

10.756

0.005

3

120

消融剂

12

10.736

10.729

0.007

实验结果表明消融剂对N80钢片的腐蚀速率极低,均小于0.01g/㎡h,理论上可认为几乎没有腐蚀。
5.现场应用
研究成果已成功应用于苏49-1、苏3、苏4-3等储气库井位于4000-5000m,长期封井桥塞的打捞施工(见表3)。
表3 消融剂现场应用效果。

序号

井号

消融剂用量/m³

处理及反应时间 /h

使用效果

1

苏49-1

1.2

20

一次打捞成功

2

苏3

1

6

一次打捞成功

3

苏4-3

1.2

8

一次打捞成功

5.1.现场试验综述
现场拟通过地面水泥车将混配好的消融剂泵入井内桥塞或封隔器的顶部,让消融剂充分“浸泡”工具上的橡胶部件,并使其软化,最终将井内工具顺利解封起出。
施工方案优化:
(1) 将消融剂正替至桥塞或封隔器顶部,消融剂用量按照工具顶部100m套管容积计算,注意准确计算顶替液用量,顶替液种类可根据井况使用清水或氯化钙溶液[13]。
(2) 关井反应2h。
(3) 上下活动管柱,使消融剂流经套管内壁与工具本体间的环形间隙,与胶筒充分接触反应[14]。
(4) 关井反应4小时。
(5) 上下活动管柱,使工具解封。
(6) 施工中根据现场实际情况可增加活动管柱的频次促进消融剂与胶筒充分接触反应,达到理想的效果[15]。
5.2.苏4-3井现场试验
图5 苏4-3井井身结构图。
该井储层深度4611.8-4741.0m,2011年6月下入桥塞进行储层封堵,卡点4600.4m,桥塞入井时间8年,测井数据显示储层中部4676m处的井温为153°C,因此桥塞在井内高温高压环境下,胶筒发生了过度交联和硬化,将对影响桥塞打捞施工的顺利进行,现场尝试上提桥塞打捞关注达到80t,超过井内管柱重量28t,进一步证明前述判断(如图5)。
按照100m长度的D127mm套管容积计算消融剂用量约为1m³,现场配置1.2m³的消融剂,施工中用D73mm油管下入桥塞打捞工具后冲洗捞获桥塞,通过水泥车将消融剂正替至桥塞顶部,顶替液用量13.6m³,顶替液为清水。
关井反应2小时后,上下活动管柱使消融剂与桥塞胶筒充分结合。再次关井反应4小时,上提后顺利解封桥塞并起出井筒。
6.结论
(1) 消融剂可在24h内将井内封隔器或桥塞的硬化胶筒进行软化降解,保证工具的解封起出顺利。
(2) 耐腐蚀实验表明,消融剂只与工具中硬化后的胶筒反应,不会对套管造成腐蚀损伤。
(3) 制订的高效可实施的现场施工方案,具有理想的现场应用效果。
(4) 成果已在苏桥储气库地区应用3井次,将工具解卡打捞时间由原来的10-15天缩短至1天,彻底消除了长时间活动解卡过程中的井控风险和井筒复杂情况发生的可能性。单井次节约施工成本约20万元,收获了良好的经济和社会效益。
References
[1] 张焕芝, 何艳青, 刘嘉, 等.国外水平井分段压裂技术发展现状与趋势 [J]. 石油科技论, 2012(6): 47-52.
[2] 伍开松, 翟志茂, 古剑飞, 等.封隔器胶筒几何参数优选 [J]. 石油矿场机械, 2008, 37(10): 68-71.
[3] 朱兆亮, 刘佳良.水平井压缩式封隔器密封结构优化研究 [J]. 润滑与密封, 2013(6): 77-80.
[4] 葛松.压缩式封隔器密封胶筒有限元分析及改进 [J]. 石油矿场机械, 2011(12): 92-95.
[5] 张福祥, 姜学海, 相建民, 等.裸眼中测压缩式封隔器胶筒材质与力学分析及其改进 [J]. 石油钻探技术, 2007, 35(4): 15-18.
[6] 周晓君, 段志明, 王剑, 等.基于Workbench分析封隔器胶筒密封性能 [J]. 工业控制计算, 2013, 26(11): 111-113.
[7] 杨秀娟, 闫相祯, 贾善坡.封隔器胶筒大变形的粘-滑摩擦接触分析 [J]. 机械强度, 2006, 28(2): 229-234.
[8] 伍开松, 朱铁军, 侯万勇, 等.胶筒系统接触有限元优化设计 [J]. 西南石油学院学报, 2006, 28(6): 88-90.
[9] 徐建宁, 王涛, 张星.基于有限元方法的桥塞胶筒非线性分析 [J]. 机械研究与应用, 2016, 29(1): 101-103.
[10] 刘旭辉, 李万斌, 冯定, 等.压缩式封隔器射孔段坐封的有限元分析 [J]. 石油机械, 2015, 43(9): 83-86.
[11] 陈大彬, 朱荣达, 吴涛, 等.基于Mooney-Rivlin模型的智能封堵器胶筒有限元分析 [J]. 长江大学学报:自然科学版: 2013, 10(19): 99-101.
[12] 伍开松, 佘月明, 张新政, 等.用接触有限元研究胶筒系统的力学行为 [J]. 石油矿场机械, 2006, 35(3): 23-26.
[13] 程文佳,李越,徐凤祥,等.气体封隔器密封单元的增强方法与安全分析 [J]. 石油机械, 2024, 52(03): 79-85.
[14] 谢昊. 封隔器胶筒结构适用性分析 [J]. 石化技术, 2022, 29(03): 43-44.
[15] 杨佰阳. 封隔器胶筒试验装置的研制及应用 [J]. 化学工程与装备, 2021, (08): 216-217.
Cite This Article
  • APA Style

    Dong, Y., Yongqiang, R., Wei, Z., Zhihong, W., Jianbao, W., et al. (2024). Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage. Science Discovery, 12(4), 89-93. https://doi.org/10.11648/j.sd.20241204.13

    Copy | Download

    ACS Style

    Dong, Y.; Yongqiang, R.; Wei, Z.; Zhihong, W.; Jianbao, W., et al. Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage. Sci. Discov. 2024, 12(4), 89-93. doi: 10.11648/j.sd.20241204.13

    Copy | Download

    AMA Style

    Dong Y, Yongqiang R, Wei Z, Zhihong W, Jianbao W, et al. Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage. Sci Discov. 2024;12(4):89-93. doi: 10.11648/j.sd.20241204.13

    Copy | Download

  • @article{10.11648/j.sd.20241204.13,
      author = {Yang Dong and Ren Yongqiang and Zhang Wei and Wei Zhihong and Wang Jianbao and Zhou Jianhua},
      title = {Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage
    },
      journal = {Science Discovery},
      volume = {12},
      number = {4},
      pages = {89-93},
      doi = {10.11648/j.sd.20241204.13},
      url = {https://doi.org/10.11648/j.sd.20241204.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20241204.13},
      abstract = {In the production process of oil and gas fields, for old wells, sealed wells, etc., if the bridge plug or packer is inserted into the well for a long time, the sealing cylinder will harden under the high-temperature and high-pressure environment of the wellbore. The sealing cylinder cannot contract normally and tightly adhere to the inner wall of the casing. During the tool unsealing and lifting process, impurities such as scale and rust on the casing wall will be scraped off and continuously accumulated, ultimately causing the bridge plug or packer to jam and unable to successfully complete the tool unsealing and salvage. During construction, the method of repeatedly moving the pipe column and suspending it is usually used for unblocking, and nitrogen gas lifting and lowering liquid construction is added, but the results are not ideal. During the process of moving the tubing, fatigue damage to the tubing increases the risk of well control and complex wellbore conditions, while significantly prolonging the construction period and increasing construction costs. Therefore, it is urgent to develop a degradation and ablation agent for hardened rubber parts, which can degrade and soften the hardened rubber cylinder, ensuring the smooth operation of tool salvage. Rubber products obtained through normal cross-linking reactions exhibit a regular grid like molecular structure, which can resist the invasion of organic molecules and oxidant molecules. This is also the reason why rubber products are resistant to organic solvents and acid-base corrosion. The experiment proposes to use a combination of "dissolution" and "destruction" methods to soften and melt the excessively cross-linked and hardened rubber cylinder.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Application Research of Bridge Plug Packer Rubber Tube Ablation Technology in Gas Storage
    
    AU  - Yang Dong
    AU  - Ren Yongqiang
    AU  - Zhang Wei
    AU  - Wei Zhihong
    AU  - Wang Jianbao
    AU  - Zhou Jianhua
    Y1  - 2024/08/20
    PY  - 2024
    N1  - https://doi.org/10.11648/j.sd.20241204.13
    DO  - 10.11648/j.sd.20241204.13
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 89
    EP  - 93
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20241204.13
    AB  - In the production process of oil and gas fields, for old wells, sealed wells, etc., if the bridge plug or packer is inserted into the well for a long time, the sealing cylinder will harden under the high-temperature and high-pressure environment of the wellbore. The sealing cylinder cannot contract normally and tightly adhere to the inner wall of the casing. During the tool unsealing and lifting process, impurities such as scale and rust on the casing wall will be scraped off and continuously accumulated, ultimately causing the bridge plug or packer to jam and unable to successfully complete the tool unsealing and salvage. During construction, the method of repeatedly moving the pipe column and suspending it is usually used for unblocking, and nitrogen gas lifting and lowering liquid construction is added, but the results are not ideal. During the process of moving the tubing, fatigue damage to the tubing increases the risk of well control and complex wellbore conditions, while significantly prolonging the construction period and increasing construction costs. Therefore, it is urgent to develop a degradation and ablation agent for hardened rubber parts, which can degrade and soften the hardened rubber cylinder, ensuring the smooth operation of tool salvage. Rubber products obtained through normal cross-linking reactions exhibit a regular grid like molecular structure, which can resist the invasion of organic molecules and oxidant molecules. This is also the reason why rubber products are resistant to organic solvents and acid-base corrosion. The experiment proposes to use a combination of "dissolution" and "destruction" methods to soften and melt the excessively cross-linked and hardened rubber cylinder.
    
    VL  - 12
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

    Biography: 杨东,1982年7月出生,男,汉族,河北省沧州市黄骅县,工程师,本科,2012年毕业于西南石油大学石油工程专业,主要从事油气田试油、试气技术管理工作。

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China

  • China National Petroleum Corporation Bohai Drilling Engineering Company Limited Downhole Services Company, Renqiu, China