| Peer-Reviewed

Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters

Received: 25 May 2022     Accepted: 14 June 2022     Published: 27 June 2022
Views:       Downloads:
Abstract

The present study aimed to assess the abundance dynamics 2 spore forming bacteria of sanitary importance Bacillus cereus and B. thuringiensis, in the rain and groundwater in urbanized area in Cameroon (Central Africa) and potential impact of some abiotic parameters. The bacteriological analyzes were made by cultures on agar media and the chemical analyzes by spectrophotometry. It appears that heterotrophic aerobic mesophilic bacterial abundances ranged from 1x106 to 1x108 CFU/100µL in wells and from 9x106 to 196x106 CFU/100µL in rainwater. The abundances of B. thuringiensis reached 320 CFU/100µL in wells, and 730 CFU/100µL in rainwater. That of B. cereus reached 340 CFU/100µL in wells, and 12x102 CFU/100µL in rainwater. The pH of wells fluctuated between 5.05 and 7.33 whereas that of rainwater varied from 6.12 to 6.88. Electrical conductivity values ranged from 111 to 885 µS/cm in wells, and varied from 3 to 92 µS/cm in rainwater. Both media contains nitrate, nitrogen ammonia, phosphate, dissolved CO2 and O2 and their concentration undergoes spatio-temporal variations. Correlations coefficients between meteorological/chemical parameters and the bacterial abundance dynamics undergoes spatial variation on one hand, and varied according to a given abiotic parameter and the bacterial species considered on the other hand. The relationships between the properties of the previous month's rainwater on the abundance dynamics of the microflora in sampled wells during the current month, referred to as a delayed impact, showed a various degrees of influence, suggesting that the properties of the sampled groundwater would mainly result from the interactions of the confounding factors, and not only due to the rainfall or rainwater properties.

Published in International Journal of Natural Resource Ecology and Management (Volume 7, Issue 2)
DOI 10.11648/j.ijnrem.20220702.16
Page(s) 109-120
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Rainwater, Wells, Bacillus cereus, B. thuringiensis, Abundance Dynamics, Abiotic Factors

References
[1] Ahmed, W., Huygens, F., Goonetilleke, A. & Gardner, T. (2008). Real-Time PCR detection of pathogenic microorganisms in roof-harvested rainwater in Southeast Queensland, Australia. Appl. Environ. Microbiol., 74 (17): 5490-5496. Doi: 10.1128/AEM.00331-08.
[2] Cheol Cho, B. & Jang, G. I. (2014). Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011. Atmospheric Environment, 94: 409-416. http://dx.doi.org/10.1016/j.atmosenv.2014.05.048
[3] Tignat-Perrier, R., Dommergue, A., Thollot, A., Keuschnig, C., Magand, O., Vogel, T. M. & Larose, C. (2019). Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Scientific Reports, 9: 14441. https://doi.org/10.1038/s41598-019-51073-4
[4] Lafond, A. (2020). Air pollution and particle Size. https://foobot.io/guides/air-pollution-particle-size.php (Accessed on 17th december 2020).
[5] Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U. & Jaenicke, R. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chemical and Physical Meteorology, 64, 15598. https://doi.org/10.3402/tellusb.v64i0.15598
[6] Clauss, M. (2015). Particle size distribution of airborne micro-organisms in the environment - A review. Applied Agriculture and Forestry Research, 2 (65): 77-100. Doi: 10.3220/LBF1444216736000.
[7] Deacon, J. (2020). The microbial world: Airborne microorganisms. http://archive.bio.ed.ac.uk/jdeacon/microbes/airborne.htm. (Accessed on 16th December 2020).
[8] Bowers, R. M., Clements, N., Emerson, J. B., Wiedinmyer, C., Hannigan, M. P. & Fierer, N. (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 47: 12097-12106. http://dx.doi.org/10.1021/es402970s
[9] Nicholson, W. L. (2002). Roles of Bacillus endospores in the environment. CMLS Cellular and Molecular Life Sciences, 59: 410-416.
[10] Nicholson, W. L., Schuerger, A. C. & Setlow, P. (2005). The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 571: 249-264.
[11] Brillard, J., Dupont, C. M. S., Berge, O., Dargaignaratz, C., Oriol-Gagnier, S., Doussan, C., Broussolle, V., Gillon, M., Clavel, T. & Bérard, A. (2014). The water cycle, a potential source of the bacterial pathogen Bacillus cereus. BioMed Research International, Article ID 356928. http://dx.doi.org/10.1155/2015/356928
[12] Glasset, B., Herbin, S., Granier, S. A., Cavalié, L., Lafeuille, E., Guérin, C., Ruimy, R., Casagrande-Magne, F., Levast, M., Chautemps, N., Decousser, J.-W., Belotti, L., Pelloux, I., Robert, J., Brisabois, A. & Ramarao, N. (2018). Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE, 13 (5), e0194346. https://doi.org/10.1371/journal.pone.0194346
[13] Ishida, R., Ueda, K., Kitano, T., Yamamoto, T., Mizutani, Y., Tsutsumi, Y., Imoto, K. & Yamamori, Y. (2019). Fatal community-acquired Bacillus cereus pneumonia in an immunocompetent adult man: a case report. BMC Infectious Diseases, 19: 197. https://doi.org/10.1186/s12879-019-3836-3
[14] Fernandez-Chapa, D., Ramírez-Villalobos, J. & Galan-Wong, L. (2019). Toxic Potential of Bacillus thuringiensis: An Overview. Intech Open books. Doi: 10.5772/intechopen.85756.
[15] Cho, E.-M., Hong, H. J., Park, S. H., Yoon, D. K., Goung, S. J. N & Lee, C. M. (2019). Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis. Int. J. Environ. Res. Public Health, 16, 1483. Doi: 10.3390/ijerph16091483.
[16] Nola, M., Njiné, T., Djuikom, E. & Sikati Foko V. (2000). Bacteria indicators dynamics in wells as influenced by well depth and well water column thickness, in Yaounde (Cameroon). African Journal of Science and Technology, 1 (2): 82-91.
[17] Nola, M., Njiné, T., Sikati Foko, V. & Djuikom, E. (2001). Distribution de Pseudomonas aeruginosa et Aeromonas hydrophila dans les eaux de la nappe phréatique superficielle en zone équatoriale au Cameroun et relations avec quelques paramètres chimiques du milieu. Revue des Sciences de l’Eau, 14 (1): 35-53.
[18] Nola, M., Njiné, T., Djuikom, E. & Sikati Foko, V. (2002). Faecal coliforms and faecal streptococci community in the underground water in an equatorial area in Cameroon (Central Africa): The importance of some environmental chemical factors. Water Research, 36 (13): 3289-3297. Doi: 10.1016/S0043-1354(02)00024-6.
[19] Nola, M., Eheth, J. S., Moungang, M. L., Karia K., Kemka, N., Zébazé Togouet, S. H., Chihib, N. E., Krier, F., Servais, P., Hornez, J.-P. & Njiné, T. (2009). Daily evolution of the abundance of Enterobacteriaceae in wells, in the equatorial region of Cameroon (Central Africa): The hierarchical order of some predominant factors. Cahiers de l’ASEES, 14: 75-84.
[20] Nola, M., Noah Ewoti, O. V., Nougang, M. E., Moungang, L. M., Chihib, N.-E., Krier, F., Hornez, J.-P. & Njiné, T. (2012). The growth of Escherichia coli in soil layers separating the soil surface from the underground water table, in Central Africa: The hierarchical influence of the soil chemical characteristics. Research Journal of Environment and Earth Sciences, 4 (2): 196-206.
[21] Nola, M., Eheth, J. S., Nougang, M. E., Moungang, L. M., Noah Ewoti, O. V., Krier, F., Chihib, N.-E., Servais, P., Hornez, J.-P. & Njiné, T. (2012). Assessment of in situ abundance dynamics of Enterobacteria and other heterotrophic bacteria in groundwater in the equatorial region of Central Africa. Water SA, 38 (5): 737-745. http://dx.doi.org/10.4314/wsa.v37i4.18
[22] Eheth, J. S., Lontsi Djimeli, C. Nana, P. A., Tamsa Arfao, A., Noah Ewoti, O. V., Moungang, L. M., Bricheux, G., Sime-Ngando, T. & Nola, M. (2019). Less effect of wells physicochemical properties on the antimicrobial susceptibility Pseudomonas aeruginosa isolated in equatorial region of Central Africa. Applied Water Science 9 (30). https://doi.org/10.1007/s13201-019-0909-9
[23] Manouore Njoya, A., Poutoum Yogne, Y., Eheth, J. S., Mouafo Tamnou, E. B., Metsopkeng, C. S., Noah Ewoti, O. V., Tamsa Arfao, A., Moungang, L. M., Nana, P. A., Chinche Belengfe, S., Masseret, E., Sime-Ngando, T. & Nola, M. (2021). Antibiotic susceptibility of four Enterobacteriaceae strains (Enterobacter cloacae, Citrobacter freundii, Salmonella typhi and Shigella sonnei) isolated from wastewater, surface water and groundwater in the equatorial zone of Cameroon (Central Africa). World Journal of Advanced Research and Reviews, 11 (01): 120-137. https://doi.org/10.30574/wjarr.2021.11.1.0303
[24] Sugiwama, A., Masuda, S., Nagaosa, K., Tsujimura, M. & Kato, K. (2016). Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences Discuss. https://doi.org/10.5194/bg-2016-78
[25] Nola, M., Njiné, T., Boutin, C., Servais, P., Messouli, M., Monkiedje, A., Zebaze Togouet, S. H. & Kemka, N. (2005). Sorption kinetics of Escherichia coli and Salmonella sp on two soil layers associated with a groundwater table in Yaounde, Cameroon (Central Africa). International Journal of Environmental Research and Public Health, 2 (3): 447-455.
[26] Nola, M., Njiné, T., Kemka, N., Zebaze Togouet, S. H., Foto Menbohan, S., Monkiedje, A., Servais, P., Messouli, M. & Boutin, C. (2006). Retention of staphylococci and total coliforms during wastewater percolation through equatorial soil in Central Africa: The role of the soil column near soil surface and that closely above groundwater table. Water, Air and Soil Pollution, 171 (1-4): 253-271. Doi: 10.1007/s11270-005-9039-0.
[27] Nola, M., Noah Ewoti, O. V., Nougang, M., Krier, F., Chihib, N.-E., Hornez, J.-P. & Njiné, T. (2011). Assessment of the hierarchical involvement of chemical characteristics of soil layer particles during bacterial retention in Central Africa. International Journal of Environment and Pollution, 46 (3-4): 178-198.
[28] Nola, M., Djarmaila, E., Kemka, N., Chihib, N.-E., Zébazé Togouet, S. H., Krier, F., Servais, P., Hornez, J.-P. &Njiné, T. (2010). Assessment of the future of heterotrophic aerobe bacteria and electrical conductivity in groundwater samples stored in households conditions at different temperatures, in the equatorial region of Central Africa. African Journal of Microbiology Research, 4 (20): 2055-2066.
[29] Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. F. & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64: 548–572.
[30] Abossolo, S. A., Amougou, J. A., Tchindjang, M., Mena, M. S. & Batha, R. A. S. (2015). Analyse des précipitations annuelles à la station de Yaoundé de 1895 à 2006. Afrique science, 11 (2): 183-194.
[31] Nair, K., Al-Thani, R., Al-Thani, D., Al-Yafei, F., Ahmed, T. & Jaoua, S. (2018). Diversity of Bacillus thuringiensis strains from Qatar as shown by crystal morphology, δ-endotoxins and cry gene content. Fontiers in Microbiology, Vol. 9, article 708. https://doi.org/10.3389/fmicb.2018.00708
[32] Kebdani, M. (2017). Identification des souches locales de Bacillus thuringiensis en vue d’une lutte biologique contre Ceratitis capitata et autres pathogènes de l’oranger Citrus sinensis. Thèse Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers, Université ABOU BAKER BELKAID de TLEMCEN, Algérie.
[33] Koua Abea, M., Bomo Assanvo, J., Sanogo, M. & Koffi, K. M. (2018). Caractérisation phénotypique de 52 souches des Bacillus isolées à partir de racines fraîches de manioc cultivées en Côte d’Ivoire. International Journal of Biology and Chemical Science, 12 (5): 2284-2293.
[34] Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T., (2000). Bergey’s manual of determinative bacteriology. 9th ed., Lipponcott Williams and Wilkins, Philadelphia.
[35] Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of the potential source environments. ISME J., 5: 601–612. Doi: 10.1038/ismej.2010.167.
[36] Jeon, E. M., Kim, H. J., Jung, K., Kim, J. H., Kim, M. Y., Kim, Y. P. & Ka, J. O. (2011). Impact of Asian dust events on airborne bacterial community assessed my molecular analyses. Atmos. Environ., 45: 4313-4321. Doi: 10.1016/j.atmosenv.2010.11.054.
[37] Zweifel, U. L., Hagström, A., Holmfeldt, K., Thyrhaug, R., Geels, C., Frohn, L. M., Skjoth, C. A. & Karlson, U. G. (2012). High bacterial 16SrRNA gene diversity above the atmospheric boundary layer. Aerobiologia 28: 481-498. Doi: 10.1007/s10453-012-9250-6.
[38] Gandolfi, I., Bertolini, V., Ambrosini, R., Bestetti, G. & Franzetti, A. (2013). Unravelling the bacterial diversity in the atmosphere. Appl. Microbiol. Biotechnol., 97: 4727-4736. Doi: 10.1007/s00253-013-4901-2.
[39] Gusareva, E. S., Acerbi, E., Lau, K. J. X., Luhung, I., Premkrishnan, B. N. V., Kolundzija, S., Purbojati, R. W., Wong, A., Houghton, J. N. I., Miller, D., Gaultier, N. E., Heinle, C. E., Clare, M. E., Kodengil Vettath, V., Kee, C., Lim, S. B. Y., Chénard, C., Phung, W. J., Kavita, K., Kushwaha, Poh Nee, Putra, A., Panicker, D., Yanqing, K., Zhei Hwee, Y., Sachin, R., Lohar, Mikinori, K., Lim Kima, H., Liang Yang, Akira Uchida, Drautz-Moses, D. I., Junqueira, A. C. M. & Schuster, S. C. (2019). Microbial communities in the tropical air ecosystem follow a precise diel cycle. PNAS, 116 (46): 23299-23308. https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
[40] Jacobson, M. Z., Kaufman, Y. J. & Rudich, Y. (2007). Examining feedbacks of aerosols to urban climate with a model that treats 3- D clouds with aerosol inclusions. J. Geophys. Res.-Atmos., 112, D24205. https://doi.org/10.1029/2007JD008922
[41] Zaveri, R. A., Easter, R. C., Fast, J. D. & Peters, L. K. (2008). Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res.-Atmos., 113, D13204. https://doi.org/10.1029/2007jd008782
[42] Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett, J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I. T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A. & Zuend, A. (2020). The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 20: 4809-4888. https://doi.org/10.5194/acp-20-4809-2020
[43] Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G. & Herrmann, H. (2017). Contributions of nitrated aromatic compounds to the light absorption of watersoluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmospheric Chemistry and Physics, 17: 1653-1672. https://doi.org/10.5194/acp-17-1653-2017
[44] Phillips, S. M., Bellcross, A. D. & Smith, G. D. (2017). Light absorption by brown carbon in the southeastern United States is pH-dependent. Environ. Sci. Technol., 51: 6782-6790. https://doi.org/10.1021/acs.est.7b01116
[45] Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, S. S., Popendorf, K. J., Oehlert, A. M., Pourmand, A., Gatineau, A., Panechou-Pulcherie, K., Blackwelder, P. & Gaston, C. J. (2019). African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. PNAS, 116 (33): 16216-16221. https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906091116/-/DCSupplemental
[46] Furdui, V., Duric, M., Eskande, H. & Stacey, N. (2022). Temporal trends of phosphorus in urban atmospheric aerosols. Canadian Journal of Chemistry. https://doi.org/10.1139/cjc-2021-0220
[47] Maron, P. A., Mougel, C., Lejon, D. P. H., Carvalho, E., Bizet, K., Marck, G., Cubito, N., Lemanceau, P. & Ranjard, L. (2006). Temporal variability of airborne bacterial community structure in an urban area. Atmos. Environ., 40: 8074-8080. Doi: 10.1016/j.atmosenv.2006.08.047.
[48] Bowers, R. M., McCubbin, I. B., Hallar, A. G. & Fierer, N. (2012). Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ., 50: 41-49. Doi: 10.1016/j.atmosenv.2012.01.005.
[49] Shaman, J. & Kohn, M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl Acad. Sci. USA, 106: 3243-3248. Doi: 10.1073/pnas.0806852106.
[50] Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface, 6: S737-S746. Doi: 10.1098/rsif.2009.0227.focus.
[51] Smith, D. J., Griffin, D. W., McPeters, R. D., Ward, P. D. & Schuerger, A. C. (2011). Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia, 27: 319-332. Doi: 10.1007/s10453-011-9203-5.
[52] Li, K., Dong, S., Wu, Y. & Yao, M. (2010). Comparison of the biological content of air samples collected at ground level and at higher elevation. Aerobiologia 26: 233-244. Doi: 10.1007/s10453-010-9159-x.
[53] Elias, M., Faria, R., Gompert, Z. & Hendry, A. (2012). Factors influencing progress toward ecological speciation. Ecological Speciation, Article ID 235010. https://doi.org/10.1155/2012/235010
Cite This Article
  • APA Style

    Morelle Raïsa Djiala Tagne, Claire Stéphane Metsopkeng, Mireille Ebiane Nougang, Edith Brunelle Mouafo Tamnou, Manouore Njoya Awawou, et al. (2022). Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters. International Journal of Natural Resource Ecology and Management, 7(2), 109-120. https://doi.org/10.11648/j.ijnrem.20220702.16

    Copy | Download

    ACS Style

    Morelle Raïsa Djiala Tagne; Claire Stéphane Metsopkeng; Mireille Ebiane Nougang; Edith Brunelle Mouafo Tamnou; Manouore Njoya Awawou, et al. Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters. Int. J. Nat. Resour. Ecol. Manag. 2022, 7(2), 109-120. doi: 10.11648/j.ijnrem.20220702.16

    Copy | Download

    AMA Style

    Morelle Raïsa Djiala Tagne, Claire Stéphane Metsopkeng, Mireille Ebiane Nougang, Edith Brunelle Mouafo Tamnou, Manouore Njoya Awawou, et al. Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters. Int J Nat Resour Ecol Manag. 2022;7(2):109-120. doi: 10.11648/j.ijnrem.20220702.16

    Copy | Download

  • @article{10.11648/j.ijnrem.20220702.16,
      author = {Morelle Raïsa Djiala Tagne and Claire Stéphane Metsopkeng and Mireille Ebiane Nougang and Edith Brunelle Mouafo Tamnou and Manouore Njoya Awawou and Pierrette Ngo Bahebeck and Samuel Davy Baleng and Yves Yogne Poutoum and Paul Alain Nana and Télesphore Sime-Ngando and Moïse Nola},
      title = {Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters},
      journal = {International Journal of Natural Resource Ecology and Management},
      volume = {7},
      number = {2},
      pages = {109-120},
      doi = {10.11648/j.ijnrem.20220702.16},
      url = {https://doi.org/10.11648/j.ijnrem.20220702.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20220702.16},
      abstract = {The present study aimed to assess the abundance dynamics 2 spore forming bacteria of sanitary importance Bacillus cereus and B. thuringiensis, in the rain and groundwater in urbanized area in Cameroon (Central Africa) and potential impact of some abiotic parameters. The bacteriological analyzes were made by cultures on agar media and the chemical analyzes by spectrophotometry. It appears that heterotrophic aerobic mesophilic bacterial abundances ranged from 1x106 to 1x108 CFU/100µL in wells and from 9x106 to 196x106 CFU/100µL in rainwater. The abundances of B. thuringiensis reached 320 CFU/100µL in wells, and 730 CFU/100µL in rainwater. That of B. cereus reached 340 CFU/100µL in wells, and 12x102 CFU/100µL in rainwater. The pH of wells fluctuated between 5.05 and 7.33 whereas that of rainwater varied from 6.12 to 6.88. Electrical conductivity values ranged from 111 to 885 µS/cm in wells, and varied from 3 to 92 µS/cm in rainwater. Both media contains nitrate, nitrogen ammonia, phosphate, dissolved CO2 and O2 and their concentration undergoes spatio-temporal variations. Correlations coefficients between meteorological/chemical parameters and the bacterial abundance dynamics undergoes spatial variation on one hand, and varied according to a given abiotic parameter and the bacterial species considered on the other hand. The relationships between the properties of the previous month's rainwater on the abundance dynamics of the microflora in sampled wells during the current month, referred to as a delayed impact, showed a various degrees of influence, suggesting that the properties of the sampled groundwater would mainly result from the interactions of the confounding factors, and not only due to the rainfall or rainwater properties.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Abundance Dynamics of 2 Bacillus Species in Rain and Underground Water in an Urbanized Area in Cameroon (Central Africa) and Impact of Some Abiotic Parameters
    AU  - Morelle Raïsa Djiala Tagne
    AU  - Claire Stéphane Metsopkeng
    AU  - Mireille Ebiane Nougang
    AU  - Edith Brunelle Mouafo Tamnou
    AU  - Manouore Njoya Awawou
    AU  - Pierrette Ngo Bahebeck
    AU  - Samuel Davy Baleng
    AU  - Yves Yogne Poutoum
    AU  - Paul Alain Nana
    AU  - Télesphore Sime-Ngando
    AU  - Moïse Nola
    Y1  - 2022/06/27
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ijnrem.20220702.16
    DO  - 10.11648/j.ijnrem.20220702.16
    T2  - International Journal of Natural Resource Ecology and Management
    JF  - International Journal of Natural Resource Ecology and Management
    JO  - International Journal of Natural Resource Ecology and Management
    SP  - 109
    EP  - 120
    PB  - Science Publishing Group
    SN  - 2575-3061
    UR  - https://doi.org/10.11648/j.ijnrem.20220702.16
    AB  - The present study aimed to assess the abundance dynamics 2 spore forming bacteria of sanitary importance Bacillus cereus and B. thuringiensis, in the rain and groundwater in urbanized area in Cameroon (Central Africa) and potential impact of some abiotic parameters. The bacteriological analyzes were made by cultures on agar media and the chemical analyzes by spectrophotometry. It appears that heterotrophic aerobic mesophilic bacterial abundances ranged from 1x106 to 1x108 CFU/100µL in wells and from 9x106 to 196x106 CFU/100µL in rainwater. The abundances of B. thuringiensis reached 320 CFU/100µL in wells, and 730 CFU/100µL in rainwater. That of B. cereus reached 340 CFU/100µL in wells, and 12x102 CFU/100µL in rainwater. The pH of wells fluctuated between 5.05 and 7.33 whereas that of rainwater varied from 6.12 to 6.88. Electrical conductivity values ranged from 111 to 885 µS/cm in wells, and varied from 3 to 92 µS/cm in rainwater. Both media contains nitrate, nitrogen ammonia, phosphate, dissolved CO2 and O2 and their concentration undergoes spatio-temporal variations. Correlations coefficients between meteorological/chemical parameters and the bacterial abundance dynamics undergoes spatial variation on one hand, and varied according to a given abiotic parameter and the bacterial species considered on the other hand. The relationships between the properties of the previous month's rainwater on the abundance dynamics of the microflora in sampled wells during the current month, referred to as a delayed impact, showed a various degrees of influence, suggesting that the properties of the sampled groundwater would mainly result from the interactions of the confounding factors, and not only due to the rainfall or rainwater properties.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Zoology Laboratory, Faculty of Sciences, University of Maroua, Maroua, Cameroon

  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Faculty of Sciences, Laboratory of Hydrobiology and Environment, University of Yaounde I, Yaounde, Cameroon

  • Department of Oceanography and Limnology, Institute of Fisheries and Aquatic Sciences, University of Douala, Douala, Cameroon

  • Laboratoire ?Microorganismes: Génome et Environnement?, UMR CNRS 6023, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat CS Aubière Cedex, France

  • Sections