| Peer-Reviewed

Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method

Received: 6 June 2016     Published: 7 June 2016
Views:       Downloads:
Abstract

The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material.

Published in International Journal of Materials Science and Applications (Volume 5, Issue 3)
DOI 10.11648/j.ijmsa.20160503.14
Page(s) 136-142
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Lithium-ion Battery, Hydrothermal, Li-rich, Cathode Material

References
[1] J. Y. Kim, and D. Y. Lim, “Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery,” Energies, vol. 3, pp. 866-885
[2] F. Y. Cheng, Z. L. Tao, J. Liang, and J. Chen, “Template-Directed Materials for Rechargeable Lithium-ion Batteries,” Chem. Mater., Vol. 20, pp. 667-681
[3] M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chem. Rev., Vol. 104, pp. 4271-4302
[4] C. Delmas, G. Prado, A. Rougier, E. Suard, and L. Fournes, “Effect of iron on the electrochemical behaviour of lithium nickelate: from LiNiO2 to 2D-LiFeO2,” Solid State Ionics, Vol. 135, pp. 71-79
[5] C. Jaephil, and P. Byungwoo, “Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material,” J. Power Sources, Vol. 92, pp. 35-39
[6] T. Ohzuku, and N. Yabuuchi, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries,” J. Power Sources, Vol. 119, pp. 171-174
[7] C. S. Johnson, N. Li, and C. Lefief, “Anomalous capacity and cycling stability of xLi2MnO3•(1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C,” Electrochem. Commun., Vol. 9, pp. 787-795
[8] Y. Wu, and A. Manthiram, “High Capacity, Surface-Modified Layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 Cathodes with Low Irreversible Capacity Loss,” Electrochem. Solid-State Lett., Vol. 9, pp. A221-A224
[9] Y. Zhang, P. Hou, E. Zhou, X. Shi, X. Wang, D. Song, J. Guo, and L. Zhang, “Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: A new procedure to improve tap density of high-performance cathode material Li1.167 (Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries,” J. Power Sources, Vol. 292, pp. 58-65
[10] E. Zhao, X. Liu, Z. Hu, L. Sun, and X. Xiao, “Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries,” J. Power Sources, Vol. 294, pp. 141-149
[11] X. Wei, S. Zhang, Z. Du, P. Yang, J. Wang, and Y. Ren, “Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method,” Electrochim. Acta, Vol. 107, pp. 549-554
[12] C. H. Song, A. M. Stephan, A. Kim, and K. S. Nahm, “Influence of Solvents on the Structural and Electrochemical Properties of Li[Li0.2Ni0.1Co0.2Mn0.5]O2 Prepared by a Solvothermal Reaction Method,” J. Electrochem. Soc., Vol. 153, pp. A390-A395
[13] H. Huang, and P. G. Bruce, A 4 V Lithium Manganese Oxide Cathode for Rocking-Chair Lithium-Ion Cells, J. Electrochem. Soc., Vol. 141, pp. L106-L107
[14] D. Chen, Q. Yu, X. Xiang, M. Chen, Z. Chen, S. Song, L. Xiong, Y. Liao, L. Xing, and W. Li, “Porous layered lithium-rich oxide nanorods: Synthesis and performances as cathode of lithium ion battery,” Electrochim. Acta, Vol. 154, pp. 83-93
[15] J. Gao, J. Kim, and A. Manthiram, “High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries,” Electrochem. Commun., Vol. 11, pp. 84-86
[16] J. H. Lim, H. Bang, K. S. Lee, K. Amine, and Y. K. Sun, “Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries,” J. Power Sources, Vol. 189, pp. 571-575
[17] S. H. Kang, and M. M. Thackeray, “Enhancing the rate capability of high capacity xLi2MnO3•(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment,” Electrochem. Commun., Vol. 11, pp. 748-751
[18] X. J. Guo, Y. X. Li, M. Zheng, J. M. Zheng, J. Li, Z. L. Gong, and Y. Yang, “Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2•(1-x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤x ≤0.9) as cathode materials for lithium ion batteries,” J. Power Sources, Vol. 184, pp. 414-419
[19] J. M. Zheng, X. B. Wu, and Y. Yang, “A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery,” Electrochim. Acta, Vol. 56, pp. 3071-3078
[20] S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, and M. M. Thackeray, “Interpreting the structural and electrochemical complexity of 0.5Li2MnO3•0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x, 0 ≤x ≤0.5),” J. Mater. Chem., Vol. 17, pp. 2069-2077
[21] S. J. Shi, J. P. Tu, Y. Y. Tang, Y. X. Yu, Y. Q. Zhang, X. L. Wang, and C. D. Gu, “Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability,” J. Power Sources, Vol. 228, pp. 14-23
[22] A. Francis, K. Daniela, T. Michael, Z. Leila, G. Judith, L. Nicole, G. Gil, M. Boris, and A. Doron, “Synthesis of Integrated Cathode Materials xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and Studies of Their Electrochemical Behavior,” J. Electrochem. Soc., Vol. 157, pp. A1121-A1126
[23] G. Y. Kim, S. B. Yi, Y. J. Park, and H. G. Kim, “Electrochemical behaviors of Li[Li(1−x)/3Mn(2−x)/3Nix/3Cox/3]O2 cathode series (0 <x <1) synthesized by sucrose combustion process for high capacity lithium ion batteries,” Mater. Res. Bull., Vol. 43, pp. 3543-3552
[24] S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. L. Wang, and C. D. Gu, “Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template,” J. Power Sources, Vol. 240, pp. 140.
[25] F. Zhou, X. M. Zhao, A. Bommel, A. W. Rowe, and J. R. Dahn, “Coprecipitation Synthesis of NixMn1-x (OH) 2 Mixed Hydroxides,” Chem. Mater., Vol. 22, pp. 1015-1021
[26] K. Lee, S. Myung, J. Moon, and Y. Sun, “Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation,” Electrochim. Acta, Vol. 53, pp. 6033-6037
[27] H. Bang, B. Park, J. Prakash, Y. Sun, “Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.46-xZrx]O2 (x=0, 0.02) via co-precipitation method,” J. Power Sources, Vol. 174, pp. 565-568
[28] L. Zhang, K. Jin, L. Wang, Y. Zhang, X. Li, and Y. Song, “High capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries,” J. Alloys Comp., Vol. 638, pp. 298-304
[29] Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, “Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2,” J. Electrochem. Soc., Vol. 149, pp. A778-A791
[30] M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, “Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries,” J. Mater. Chem., Vol. 17, pp. 3112-3125
[31] C. W. Park, S. H. Kim, I. Ruth Mangani, J. H. Lee, S. Boo, and J. Kim, “Synthesis and materials characterization of Li2MnO3-LiCrO2 system nanocomposite electrode materials,” Mater. Res. Bull., Vol. 42, pp. 1374-1383
[32] Z. Lu, and J. R. Dahn, “In Situ and Ex Situ XRD Investigation of Li[CrxLi1/3-x/3Mn2/3-2x/3]O2 (x=1/3) Cathode material Batteries,” J. Electrochem. Soc., Vol. 150, pp. A1044-A1051
[33] B. Hwang, R. Santhanam, and C. Chen, “Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries,” J. Power Sources, Vol. 114, pp. 244-252
[34] R. Alcantara, P. Lavela, J. Tirado, R. Stoyanova, and E. Zhecheva, “Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide,” J. Electrochem. Soc., Vol. 145, pp. 730-736
[35] Z. Chang, Z. Chen, F. Wu, H. Tang, Z. Zhu, X. Z. Yuan, and H. Wang, “Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method,” Electrochim. Acta, Vol. 53, pp. 5927-5933
[36] Z. L. Liu, A. S. Yu, and J. Y. Lee, “Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries,” J. Power Sources, Vol. 81, pp. 416-419
[37] D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D. L. Wood, and C. Daniel, “Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction,” J. Power Sources, Vol. 229, pp. 239-248
[38] G. B. Liu, H. Liu, Y. F. Shi, “The synthesis and electrochemical properties of xLi2MnO3-(1-x)MO2 (M=Mn1/3Ni1/3Fe1/3) via co-precipitation method,” Electrochim. Acta, Vol. 88, pp. 112-116
[39] B. H. Song, Z. W. Liu, M. O. Lai, and L. Lu, “Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material,” Chem. Chem. Phys., Vol. 14, pp. 12875-12883
[40] W. S. Yoon, N. Kim, X. Q. Yang, J. McBreen, and C. P. Grey, “6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides,” J. Power Sources, Vol. 119, pp. 649-653
[41] J. Zhang, X. Guo, S. Yao, W. Zhu, and X. Qiu, “Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation method,” J. Power Sources, Vol. 238, pp. 245-250
[42] N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, and S. Komaba, “Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2,” J. Am. Chem. Soc., Vol. 133, pp. 4404-4419
[43] Z. Lu, and J. Dahn, “Understanding the Anomalous Capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)O2 Cells Using In Situ X-Ray,” Electrochem. Soc., Vol. 149, pp. A815-A822
[44] A. Robertson, and P. Bruce, “Overcapacity of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 Electrodes,” Electrochem. Solid State Lett., Vol. 7, pp. A294-A298
[45] A. R. Armstrong, M. Holzapfel, P. Novak, C. Johnson, S. Kang, M. Thackeray, and P. Bruce, “Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2,” J. Am. Chem. Soc., Vol. 128, pp. 8694-8698
[46] F. Wu, M. Wang, Y. Su, L. Bao, and S. Chen, “A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery,” J. Power Sources, Vol. 195, pp. 2362-2367
[47] J. Zheng, S. Deng, Z. Shi, H. Xu, Y. Deng, Z. Zhang, and G. Chen, “The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material,” J. Power Sources, Vol. 221, pp. 108-113
[48] J. J. Wang, G. Yuan, M. Zhang, B. Qiu, Y. Xia, and Z. Liu, “The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤x ≤0.7) cathode materials,” Electrochim. Acta, Vol. 66, pp. 61-66
[49] A. Ito, D. Li, Y. Sato, M. Arao, M. Watanabe, M. Hatano, H. Horie, and Y. Ohsaw, “Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2,” J. Power Sources, Vol. 195, pp. 567-573
[50] J. Park, J. H. Seo, G. Plett, W. Lu, and A. M. Sastry, “Numerical Simulation of the Effect of the Dissolution of LiMn2O4 Particles on Li-Ion Battery Performance,” Electrochem. Solid State Lett., Vol. 14, pp. A14-A18
[51] D. H. Jang, Y. J. Shin, and S. M. Oh, “Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LixMn2O4 Cells,” J. Electrochem. Soc., Vol. 143, pp. 2204-2211
[52] M. Wohlfahrt-Mehrens, C. Vogler, and J. Garche, “Aging mechanisms of lithium cathode materials,” J. Power Sources, Vol. 127, pp. 58-64
[53] M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, “On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes,” Electrochim. Acta, Vol. 45, pp. 1781-1789
[54] S. A. Mamuru, K. I. Ozoemena, T. Fukuda, and N. Kobayashi, “Iron (II) tetrakis (diaquaplatinum) octacarbixyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid,” J. Mater. Chem., Vol. 20, pp. 10705-10715
[55] H. W. Ha, N. J. Yun, and K. Kim, “Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries,” Electrochim. Acta, Vol. 52, pp. 3236-3241
[56] Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, and H. Q. Wu, “A novel carbon-coated LiCoO2 as cathode material for lithium ion battery,” Electrochem. Commun., Vol. 9, pp. 1228-1232
[57] C. J. Jafta, K. I. Ozoemena, M. K. Mathe, and W. D. Roos, “Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery,” Electrochim. Acta, Vol. 85, pp. 411-422
[58] K. G. Gallagher, J. R. Croy, M. Balasubramanian, M. Bettge, D. P. Abraham, A. K. Burrell, and M. M. Thackeray, “Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes,” Electrochem. Commun., Vol. 33, pp. 96-98
Cite This Article
  • APA Style

    Wang Meng, Li Wei, Yang Tao, Wu Feng. (2016). Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. International Journal of Materials Science and Applications, 5(3), 136-142. https://doi.org/10.11648/j.ijmsa.20160503.14

    Copy | Download

    ACS Style

    Wang Meng; Li Wei; Yang Tao; Wu Feng. Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. Int. J. Mater. Sci. Appl. 2016, 5(3), 136-142. doi: 10.11648/j.ijmsa.20160503.14

    Copy | Download

    AMA Style

    Wang Meng, Li Wei, Yang Tao, Wu Feng. Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. Int J Mater Sci Appl. 2016;5(3):136-142. doi: 10.11648/j.ijmsa.20160503.14

    Copy | Download

  • @article{10.11648/j.ijmsa.20160503.14,
      author = {Wang Meng and Li Wei and Yang Tao and Wu Feng},
      title = {Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method},
      journal = {International Journal of Materials Science and Applications},
      volume = {5},
      number = {3},
      pages = {136-142},
      doi = {10.11648/j.ijmsa.20160503.14},
      url = {https://doi.org/10.11648/j.ijmsa.20160503.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160503.14},
      abstract = {The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method
    AU  - Wang Meng
    AU  - Li Wei
    AU  - Yang Tao
    AU  - Wu Feng
    Y1  - 2016/06/07
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ijmsa.20160503.14
    DO  - 10.11648/j.ijmsa.20160503.14
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 136
    EP  - 142
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20160503.14
    AB  - The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Jiangsu Chunlan Clean Energy Academy CO., LTD., Jiangsu, China

  • Jiangsu Chunlan Clean Energy Academy CO., LTD., Jiangsu, China

  • Jiangsu Chunlan Clean Energy Academy CO., LTD., Jiangsu, China

  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China

  • Sections