The effect of nanosize silica particle on the stability, structures and rheological behaviours of cubic liquid crystalline phases of Glucopone/water/heptane system were investigated. Small-angle X-ray scattering (SAXS) and polarizing microscope were used for phase identification and structure characterization. SAXS scattering profile was characteristic to cubic phase before and after the addition of silica particles. The cubic samples showed several diffraction peaks and can be assigned to the Ia3d space group. The area per surfactant molecule was found to increase as the silica concentrations was increased. Moreover, the rheological study on the cubic phase with different silica concentration was performed. The frequency-dependent storage and loss modulus were found to be characteristic of the cubic phase in the linear viscoelastic region. The cubic samples behave as solid-like material with storage modulus G’~ 0.7106 Pa typical of cubic lyotropic materials. The elasticity of cubic samples was found to increase with silica concentration. The increase in the elasticity was ascribed to the network and the formation of smaller structure as indicated by SAXS measurements. As temperature was further increased a decreased in the elasticity was observed confirming the structural change as indicated by the change in slopes of G’ and G”. The cubic samples exhibited shear thinning behaviours, with the dynamic viscosity being affected by the silica particles concentrations and the effect of silica particles on the rheological behaviours was quite noticeable as the concentration increased. The results showed strong correlation between rheology and microstructural changes in the dispersion of nanoparticle silica in the cubic phase system.
Published in | International Journal of Materials Science and Applications (Volume 4, Issue 2) |
DOI | 10.11648/j.ijmsa.20150402.20 |
Page(s) | 130-137 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Glycolipid, Rheology, Silica Particles, Small Angle X-Ray Scattering, Viscoelasticity
[1] | W. Curatolo, 1987. Biochemica and Biophysica Acta 906: 111-136. |
[2] | W. Curatolo, 1987. Biochemica and Biophysica Acta 906: 137-160. |
[3] | H. Ellens, D. P.Siegel, D. Alford, P.Yeagle, L. Boni, L. Lis, P. Quinn, & J. Bentz, 1989. Biochem. 28: 3692-3703. |
[4] | D. P.Siegel, J. Banschbach, J. Alford, H. Ellens, L. Lis, P. Quinn, P. yeagle, & J. Bentz, 1989. Biochem. 28: 3703-3709. |
[5] | C. Tringali, 2001. Biological Compounds from Natural Sources. Isolation, Characterisation and Biological Properties. London: Taylor & Francis. |
[6] | J. P.F. Lagerwall, G. Scalia, Current Applied Physics, Volume 12, Issue 6, November 2012, Pages 1387. |
[7] | F. Muller, J. Degrouard, A. Salonen, Chapter 8: Stabilization of Lipid-Based Lyotropic Liquid Crystalline Phases by Nanoparticles: Perspectives for Colloid–IsasomesIn book: Advances in Planar Lipid Bilayers and Liposomes, Volume 18, 2013, 209 |
[8] | D. Constantin and P. Davidson, ChemPhysChem 02/2014; 15(7):1270. |
[9] | T. Iwanaga, M. Suzuki, H. Kunieda, Langmuir, 14 (1998) 5775. |
[10] | B. R. Midmore, Colloids and Surfaces A: Physicochem. Eng. Aspects, 182 (2001) 83. |
[11] | E. Anoardo, F. Grinberg, M. Vilfan, R. Kimmich, Chemical Physics, 297 (2004) 99. |
[12] | G. S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Phys. Rev. E, 58 (1998) 5966. |
[13] | T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini, C. Zannoni, Phys. Rev. Lett., 85 (2000) 1008. |
[14] | A. Hourri, P. Jamee, T.K. Bose, J. Thoem, Liq. Cryst., 29 (2002) 459. |
[15] | M. A. Siddig, S. Radiman, S. V. Muniandy, L. S. Jan, Colloids Surf. A Physicochem. Eng. Aspects, 236 (2004) 57. |
[16] | A. Stradner, O. Glatter, P. Schurtenberger, Langmuir, 16 (2000) 5354. |
[17] | F. Nilsson, O. Soderman, I. Johansson, J. Colloid Interface Sci., 203 (1998) 131. |
[18] | J.M. Seddon, Biochemistry 29 (1990) 7997. |
[19] | Z. Huang, J.M. Seddon, R.H. Templer, Chem. Phys. Lipids 82 (1996) |
[20] | J. Charvolin, J. Phys. Chem. 92 (1988) 2646. |
[21] | F. Nilsson, O. Soderman, I. Johansson, Langmuir, 14 (1998) 4050. |
[22] | S. Radiman, C. Toprakcioglu, T. Mcleish, Langmuir, 10 (1994) 61. |
[23] | J. Jones, T. McLeish, Langmuir, 15 (1999) 7495. |
[24] | Gradzielski, M. Hofmann, H., Panitz, J. & Wokaun, A. 1995. Investigations on L2 Phases and Cubic Phases in the System AOT/1-Octanol/Water. J. Colloid interface Sci. 169:103-118 |
[25] | P.J. Maddaford, C. Toprakcioglu, Langmuir 9 (1993) 2868. |
[26] | M. E. Cates, J. Candau, J. Phys. Condens. Matter, 2 (1990) 6869. |
[27] | E. Cappelaere, R. Cressely, Rheol Acta, 39 (2000) 346. |
[28] | M. A. Siddig, S. Radiman, L.S. Jan, S.V. Muniandy, Colloids and Surfaces A: Physicochem. Eng. Aspects 254 (2005) 215 |
APA Style
Mohamed A. Siddig, Abubaker A. Siddig, Lal S. Jan, Abdelrahman A. Elbadawi, Shahidan Radiman. (2015). Influence of Nanosize Silica Particles on the Rheological Behaviour of Lyotropic Cubic Phase of Glucopone (APG) Surfactant. International Journal of Materials Science and Applications, 4(2), 130-137. https://doi.org/10.11648/j.ijmsa.20150402.20
ACS Style
Mohamed A. Siddig; Abubaker A. Siddig; Lal S. Jan; Abdelrahman A. Elbadawi; Shahidan Radiman. Influence of Nanosize Silica Particles on the Rheological Behaviour of Lyotropic Cubic Phase of Glucopone (APG) Surfactant. Int. J. Mater. Sci. Appl. 2015, 4(2), 130-137. doi: 10.11648/j.ijmsa.20150402.20
AMA Style
Mohamed A. Siddig, Abubaker A. Siddig, Lal S. Jan, Abdelrahman A. Elbadawi, Shahidan Radiman. Influence of Nanosize Silica Particles on the Rheological Behaviour of Lyotropic Cubic Phase of Glucopone (APG) Surfactant. Int J Mater Sci Appl. 2015;4(2):130-137. doi: 10.11648/j.ijmsa.20150402.20
@article{10.11648/j.ijmsa.20150402.20, author = {Mohamed A. Siddig and Abubaker A. Siddig and Lal S. Jan and Abdelrahman A. Elbadawi and Shahidan Radiman}, title = {Influence of Nanosize Silica Particles on the Rheological Behaviour of Lyotropic Cubic Phase of Glucopone (APG) Surfactant}, journal = {International Journal of Materials Science and Applications}, volume = {4}, number = {2}, pages = {130-137}, doi = {10.11648/j.ijmsa.20150402.20}, url = {https://doi.org/10.11648/j.ijmsa.20150402.20}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20150402.20}, abstract = {The effect of nanosize silica particle on the stability, structures and rheological behaviours of cubic liquid crystalline phases of Glucopone/water/heptane system were investigated. Small-angle X-ray scattering (SAXS) and polarizing microscope were used for phase identification and structure characterization. SAXS scattering profile was characteristic to cubic phase before and after the addition of silica particles. The cubic samples showed several diffraction peaks and can be assigned to the Ia3d space group. The area per surfactant molecule was found to increase as the silica concentrations was increased. Moreover, the rheological study on the cubic phase with different silica concentration was performed. The frequency-dependent storage and loss modulus were found to be characteristic of the cubic phase in the linear viscoelastic region. The cubic samples behave as solid-like material with storage modulus G’~ 0.7106 Pa typical of cubic lyotropic materials. The elasticity of cubic samples was found to increase with silica concentration. The increase in the elasticity was ascribed to the network and the formation of smaller structure as indicated by SAXS measurements. As temperature was further increased a decreased in the elasticity was observed confirming the structural change as indicated by the change in slopes of G’ and G”. The cubic samples exhibited shear thinning behaviours, with the dynamic viscosity being affected by the silica particles concentrations and the effect of silica particles on the rheological behaviours was quite noticeable as the concentration increased. The results showed strong correlation between rheology and microstructural changes in the dispersion of nanoparticle silica in the cubic phase system.}, year = {2015} }
TY - JOUR T1 - Influence of Nanosize Silica Particles on the Rheological Behaviour of Lyotropic Cubic Phase of Glucopone (APG) Surfactant AU - Mohamed A. Siddig AU - Abubaker A. Siddig AU - Lal S. Jan AU - Abdelrahman A. Elbadawi AU - Shahidan Radiman Y1 - 2015/04/17 PY - 2015 N1 - https://doi.org/10.11648/j.ijmsa.20150402.20 DO - 10.11648/j.ijmsa.20150402.20 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 130 EP - 137 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20150402.20 AB - The effect of nanosize silica particle on the stability, structures and rheological behaviours of cubic liquid crystalline phases of Glucopone/water/heptane system were investigated. Small-angle X-ray scattering (SAXS) and polarizing microscope were used for phase identification and structure characterization. SAXS scattering profile was characteristic to cubic phase before and after the addition of silica particles. The cubic samples showed several diffraction peaks and can be assigned to the Ia3d space group. The area per surfactant molecule was found to increase as the silica concentrations was increased. Moreover, the rheological study on the cubic phase with different silica concentration was performed. The frequency-dependent storage and loss modulus were found to be characteristic of the cubic phase in the linear viscoelastic region. The cubic samples behave as solid-like material with storage modulus G’~ 0.7106 Pa typical of cubic lyotropic materials. The elasticity of cubic samples was found to increase with silica concentration. The increase in the elasticity was ascribed to the network and the formation of smaller structure as indicated by SAXS measurements. As temperature was further increased a decreased in the elasticity was observed confirming the structural change as indicated by the change in slopes of G’ and G”. The cubic samples exhibited shear thinning behaviours, with the dynamic viscosity being affected by the silica particles concentrations and the effect of silica particles on the rheological behaviours was quite noticeable as the concentration increased. The results showed strong correlation between rheology and microstructural changes in the dispersion of nanoparticle silica in the cubic phase system. VL - 4 IS - 2 ER -