Review Article | | Peer-Reviewed

The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis

Received: 20 December 2023     Accepted: 6 January 2024     Published: 20 February 2024
Views:       Downloads:
Abstract

The Slaughter house is the place in which the animals are slaughtered for human consumption. The Slaughter house plays important role in prevention of zoonotic diseases between animals and humans like Mycobacterium tuberculosis as reemerging foodborne illness and also prevent infectious diseases between animals. Bovine Mycobacterium tuberculosis is caused by a species of pathogenic Gram positive, acid fast stain bacteria in the Mycobacteriaceae family. the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness tuberculosis bacteria has an waxy cover on its surface primarily due to the presence of acid called mycolic which refers the cells impervious to Gram staining, and as a result, the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness may appear weakly Gram-positive. Acid-fast bacilli by using certain stains called Ziehl Nielsen, or through using stain called fluorescent such as aura mine are used to identify the cause of Bovine tuberculosis as reemerging foodborne illness with a microscope. The Bacteria cause Bovine tuberculosis as a reemerging foodborne illness is aerobic bacteria and needs high concentrations of oxygen. Mainly this bacteria is pathogenic to human and mammal's respiratory system, it infects the lungs. The most diagnostic means for Bovine tuberculosis as a reemerging foodborne illness are the tuberculin skin examination, stain of acid-fast, laboratory culture, and through using polymerase chain reaction method.

Published in International Journal of Food Engineering and Technology (Volume 8, Issue 1)
DOI 10.11648/j.ijfet.20240801.12
Page(s) 8-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

The Slaughter House, Cattle, Mycobacterium Tuberculosis, Reemerging, Foodborne Illness

References
[1] Abdel-Moein K. A., Hamed O., Fouad H. Molecular detection of Mycobacterium tuberculosis in cattle and buffaloes: A cause for public health concern. Trop. Anim. Health Prod. 2016; 48: 1541–1545.
[2] Shaltout, F. A., Riad,. M., and AbouElhassan, Asmaa, A (2017): prevalence Of Mycobacterium Tuberculosis In Imported cattle Offals And Its lymph Nodes. Veterinary Medical Journal -Giza (VMJG), 63(2): 115–122.
[3] Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, twelfth edition 2023.
[4] Shaltout, F. A., Riad, E. M., and Asmaa Abou-Elhassan (2017): Prevalence Of Mycobacterium Spp. In Cattle Meat And Offal's Slaughtered In And Out Abattoir. Egyptian Veterinary medical Association, 77(2): 407–420.
[5] Roadmap for zoonotic tuberculosis © World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO) and World Organisation for Animal Health (OIE), 2017.
[6] Abd Elaziz, O., Fatin S. Hassanin, Fahim A. Shaltout and Othman A. Mohamed (2021): Prevalence of Some Foodborne Parasitic Affection in Slaughtered Animals in Loacal Egyptian Abottoir. Journal of Nutrition Food Science and Technology 2(3): 1-5.
[7] Smith T. A comparative study of bovine tubercle bacilli and of human bacilli from sputum. J. Exp. Med. 1898; 3: 451–511.
[8] Abd Elaziz, O., Fatin, S Hassanin, Fahim, A Shaltout, Othman, A Mohamed (2021): Prevalence of some zoonotic parasitic affections in sheep carcasses in a local abattoir in Cairo, Egypt. Advances in Nutrition & Food Science 6(2): 25-31.
[9] Borham M., Oreiby A., El-Gedawy A., Hegazy Y., Al-Gaabary M. Tuberculin test errors and its effect on detection of bovine tuberculosis. J. Hell. Vet. Med. 2021; 72: 3263–3270.
[10] Al Shorman, A. A. M.; Shaltout,. A. and hilat, (1999): Detection of certain hormone residues in meat marketed in Jordan. Jordan University of Science and Technology, 1st International Conference on Sheep and goat Diseases and Productivity, 23-25 October, 1999.
[11] Alvarez A. H., Estrada-Chávez C., Flores-Valdez M. A. Molecular findings and approaches spotlighting Mycobacterium bovis persistence in cattle. Vet. Res. 2009; 40: 22.
[12] Edris, A. M.; Shaltout, F. A.; Salem, G. H. and El-Toukhy,. I. (2011): Plasmid profile analysis of Salmonellae isolated from some meat products. Benha University, aculty of Veterinary Medicine, Fourth Scientific Conference 25-27th May 2011 Veterinary Medicine and Food Safety: 194-201 benha, Egypt.
[13] Krajewska-Wędzina M., Didkowska A., Sridhara A. A., Elahi R., Johnathan-Lee A., Radulski Ł., Lipiec M., Anusz K., Lyashchenko K. P., Miller M. A., et al. Transboundary tuberculosis: Importation of alpacas infected with Mycobacterium bovis from the United Kingdom to Poland and potential for serodiagnostic assays in detecting tuberculin skin test false-negative animals. Transbound. Emerg. Dis. 2020; 67: 1306–1314.
[14] Hassanien, F. S.; Shaltout, F. A.; Fahmey, M. Z. and Elsukkary, H. F. (2020): Bacteriological quality guides in local and imported beef and their relation to public health. Benha Veterinary Medical Journal 39: 125-129.
[15] Egbe N. F., Muwonge A., Ndip L., Kelly R. F., Sander M., Tanya V., Ngwa V. N., Handel I. G., Novak A., Ngandalo R., et al. Molecular epidemiology of Mycobacterium bovis in Cameroon. Sci. Rep. 2017; 7: 4652.
[16] Hassanin, F. S; Shaltout, F. A., Lamada, H. M., Abd Allah, E. M. (2011): THE EFFECT OF PRESERVATIVE (NISIN) ON THE SURVIVAL OF LISTERIA MONOCYTOGENES. BENHA VETERINARY MEDICAL JOURNAL (2011)-SPECIAL ISSUE [I]: 141-145.
[17] Ameni G., Tadesse K., Hailu E., Deresse Y., Medhin G., Aseffa A., Hewinson G., Vordermeier M., Berg S. Transmission of Mycobacterium tuberculosis between farmers and cattle in central Ethiopia. PLoS ONE. 2014; 8: e76891.
[18] Khattab, E., ahim Shaltout and Islam Sabik (2021): Hepatitis A virus related to foods. BENHA VETERINARY MEDICAL JOURNAL 40(1): 174-179.
[19] Abdellrazeq G. S., Elnaggar M. M., Osman H. S., Davis W. C., Singh M. Prevalence of Bovine Tuberculosis in Egyptian Cattle and the Standardization of the Interferon-gamma Assay as an Ancillary Test. Transbound. Emerg. Dis. 2016; 63: 497–507.
[20] Saif., Saad S. M., Hassanin, F. S; Shaltout FA, Marionette Zaghloul (2019): Molecular detection of enterotoxigenic Staphylococcus aureus in ready-to-eat beef products. Benha Veterinary Medical Journal 37 (2019) 7-11.
[21] Charles O. T., James H. S., Michael J. G. Book. Mycobacterium bovis Infection in Animals and Humans. 2nd ed. Blackwell Publishing; Hoboken, NJ, USA: 2006.
[22] Shaltout, F. A., Mona N. Hussein, Nada Kh. Elsayed (2023): Histological Detection of Unauthorized Herbal and Animal Contents in Some Meat Products. Journal of Advanced Veterinary Research 13(2): 157-160.
[23] Klepp L. I., Eirin M. E., Garbaccio S., Soria M., Bigi F., Blanco F. C. Identification of bovine tuberculosis biomarkers to detect tuberculin skin test and IFNγ release assay false negative cattle. Res. Vet. Sci. 2019; 122: 7–14.
[24] Shaltout, F. A., Abdelazez Ahmed Helmy Barr and Mohamed Elsayed Abdelaziz (2022): Pathogenic Microorganisms in Meat Products. Biomedical Journal of Scientific & Technical Research 41(4): 32836-32843.
[25] Helmy N. M., Abdel-Moghney A. R. F., Atia M. A. Evaluation of Different PCR-Based Techniques in Diagnosis of Bovine Tuberculosis in Infected Cattle Lymph Nodes. Am. J. Microbiol. Biotechnol. 2015; 2: 75–81.
[26] Shaltout, F. A., E. M. El-diasty and M. A. Asmaa- Hassan (2020): HYGIENIC QUALITY OF READY TO EAT COOKED MEAT IN RESTAURANTS AT Cairo. Journal of Global Biosciences 8(12): 6627-6641.
[27] Domingo M., Vidal E., Marco A. Pathology of bovine tuberculosis. Res. Vet. Sci. 2014; 97: S20–S29.
[28] Shaltout, F. A. (2019): Food Hygiene and Control. Food Science and Nutrition Technology 4(5): 1-2.
[29] Orłowska B., Krajewska-Wędzina M., Augustynowicz-Kopeć E., Kozińska M., Brzezińska S., Zabost A., Didkowska A., Welz M., Kaczor S., Żmuda P., et al. Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady Mountains, on the border of Southeast Poland. BMC Vet. Res. 2020; 16: 362.
[30] Gaafar, Hassanin, F. S; Shaltout, F. A., Marionette Zaghloul (2019): Hygienic profile of some ready to eat meat product sandwiches sold in Benha city, Qalubiya Governorate, Egypt. Benha Veterinary Medical Journal 37 (2) 16-21.
[31] Radostits O. M., Gay C. C., Blood D. C., Hinchliff K. W. Veterinary Medicine. A Textbook of the Diseases of Cattle, Sheep, Goats and Horses. 8th ed. Ballier Tindals; London, UK: 2007. pp. 830–838.
[32] Osman M. M., Shanahan J. K., Chu F., Takaki K. K., Pinckert M. L., Pagán A. J., Brosch R., Conrad W. H., Ramakrishnan L. The C terminus of the mycobacterium ESX-1 secretion system substrate ESAT-6 is required for phagosomal membrane damage and virulence. Proc. Natl. Acad. Sci. USA. 2022; 119: e2122161119.
[33] Saad S. M., Shaltout, F. A., Nahla A Abou Elroos2 and Saber B El-nahas (2019): Incidence of Staphylococci and E. coli in Meat and Some Meat Products. EC Nutrition 14.6 (2019).
[34] Miller M. A., Kerr T. J., de Waal C. R., Goosen W. J., Streicher E. M., Hausler G., Rossouw L., Manamela T., van Schalkwyk L., Kleynhans L., et al. Mycobacterium bovis Infection in Free-Ranging African Elephants. Emerg. Infect. Dis. 2021; 27: 990.
[35] Saad S. M., Hassanin, F. S.; Shaltout, F. A., Marionette Z Nassif, Marwa Z Seif. (2019: Prevalence of Methicillin-Resistant Staphylococcus Aureus in Some Ready-to-Eat Meat Products. American Journal of Biomedical Science & Research 4(6): 460-464.
[36] Fielding H. R., McKinley T. J., Delahay R. J., Silk M. J., McDonald R. A. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet. Med. Sci. 2021; 7: 310–321.
[37] Shaltout, F. A.; E. M EL-diasty; M. S. M Mohamed (2018): Effects of chitosan on quality attributes fresh meat slices stored at 4 C. BENHA VETERINARY MEDICAL JOURNAL, 35(2): 157-168.
[38] Byrne A. W., Graham J., Brown C., Donaghy A., Guelbenzu-Gonzalo M., McNair J., McDowell S. W. Modelling the variation in skin-test tuberculin reactions, post-mortem lesion counts and case pathology in tuberculosis-exposed cattle: Effects of animal characteristics, histories and co-infection. Transbound. Emerg. Dis. 2018; 65: 844–858.
[39] Shaltout, F. A., Mohamed, A. H. El-Shater., Wafaa Mohamed Abd El-Aziz (2015): Bacteriological assessment of Street Vended Meat Products sandwiches in kalyobia Governorate. BENHA VETERINARY MEDICAL JOURNAL, 28(2) 58-66.
[40] Elsayed M. S. A. E., Amer A. The rapid detection and differentiation of Mycobacterium tuberculosis complex members from cattle and water buffaloes in the delta area of Egypt, using a combination of real-time and conventional PCR. Mol. Biol. Rep. 2019; 46: 3909–3919.
[41] Shaltout, F. A., Mohamed A El shatter and Heba M Fahim (2019): Studies on Antibiotic Residues in Beef and Effect of Cooking and Freezing on Antibiotic Residues Beef Samples. Scholarly Journal of Food and Nutritionm 2(1) 1-4.
[42] Dejene S. W., Heitkönig I. M., Prins H. H., Lemma F. A., Mekonnen D. A., Alemu Z. E., Kelkay T. Z., de Boer W. F. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia. PLoS ONE. 2016; 11: e0159083.
[43] Shaltout FA, Ahmed A A Maarouf and Mahmoud ES Elkhouly. (2017): Bacteriological Evaluation of Frozen Sausage. Nutrition and Food Toxicology 1.5; 174-185.
[44] Belinda S. T., Erin L. G. Rebhun’s Diseases of Dairy Cattle. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2018. Miscellaneous Infectious Diseases; pp. 745–746.
[45] Shaltout, F. A., A. M. Ali and S. M. Rashad (2016): Bacterial Contamination of Fast Foods. Benha Journal of Applied Sciences (BJAS) 1 (2) 45-51.
[46] Bezos J., Casal C., Romero B., Schroeder B., Hardegger R., Raeber A. J., Domínguez L. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res. Vet. Sci. 2014; 97: S44–S52.
[47] Shaltout, F. A., Zakaria. I. M., Jehan Eltanani1, Asmaa. Elmelegy (2015): Microbiological status of meat and chicken received to University student hostel. BENHA VETERINARY MEDICAL JOURNAL, VOL. 29, NO. 2: 187-192, DECEMBER, 2015.
[48] Abbate J. M., Arfuso F., Iaria C., Arestia G., Lanteri G. Prevalence of bovine tuberculosis in slaughtered cattle in Sicily, Southern Italy. Animals. 2020; 10: 1473.
[49] Saad, S. M. and Shaltout, F. A. (1998): Mycological Evaluation of camel carcasses at Kalyobia Abattoirs. Vet. Med. J. Giza, 46(3): 223-229.
[50] Krajewska M., Załuski M., Zabost A., Orłowska B., Augustynowicz-Kopeć E., Anusz K., Lipiec M., Weiner M., Szulowski K. Tuberculosis in antelopes in a zoo in Poland–Problem of Public Health. Pol. J. Microbiol. 2015; 4: 405–407.
[51] Constable P. D., Hinchcliff K. W., Done S. H., Grünberg W. Veterinary Medicine-e-Book: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. Elsevier; Amsterdam, The Netherlands: 2016.
[52] Shaltout FA, Riad EM, ES Ahmed and AbouElhassan A. (2017): Studying the Effect of Gamma Irradiation on Bovine Offal's Infected with Mycobacterium tuberculosis Bovine Type. Journal of Food Biotechnology Research 1 (6): 1-5.
[53] Romha G., Gebru G., Asefa A., Mamo G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic tuberculosis in Ethiopia. Prev. Vet. Med. 2018; 158: 1–17.
[54] Howell A. K., McCann C. M., Wickstead F., Williams D. J. Co-infection of cattle with Fasciola hepatica or F. gigantica and Mycobacterium bovis: A systematic review. PLoS ONE. 2019; 14: e0226300.
[55] Shaltout FA, Mohamed, A. Hassan and Hassanin, F. S (2004): THERMAL INACTIVATION OF ENTEROHAEMORRHAGIC ESCHERICHIA COLI O157: H7 AND ITS SENSTIVITY TO NISIN AND LACTIC ACID CULTURES. 1rst Ann. Confr., FVM., Moshtohor, Sept, 2004.
[56] Shaltout FA, Mohammed Farouk; Hosam A. A. Ibrahim and Mostafa E. M. Afifi4. 2017: Incidence of Coliform and Staphylococcus aureus in ready to eat fast foods. BENHA VETERINARY MEDICAL JOURNAL, 32(1): 13-17, MARCH, 2017.
[57] Le Roex N., Koets A. P., Van Helden P. D., Hoal E. G. Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLoS ONE. 2013; 8: e64494.
[58] Shaltout, F. A. (1992): Studies on Mycotoxins in Meat and Meat by Products. M. V. Sc Thesis Faculty of Veterinary Medicine, oshtohor, agazig University Benha branch.
[59] Vordermeier H. M., Jones G. J., Buddle B. M., Hewinson R. G., Villarreal-Ramos B. Bovine tuberculosis in cattle: Vaccines, DIVA tests, and host biomarker discovery. Annu. Rev. Anim. Biosci. 2016; 4: 87–109. https://doi.org/10.1146/annurev-animal-021815-111311
[60] Shaltout, F. A. (1996): Mycological And Mycotoxicological profile Of Some Meat products. Ph. D. Thesis, Faculty of Veterinary Medicine, Moshtohor, Zagazig University Benha branch.
[61] Shaltout, F. A. (1998): Proteolytic Psychrotrophes in Some Meat products. Alex. Vet. Med. J. 14 (2): 97-107.
[62] Shaltout, F. A. (1999): Anaerobic Bacteria in Vacuum Packed Meat Products. Benha Vet. Med. J. 10 (1): 1-10.
[63] Hlokwe T. M., Said H., Gcebe N. Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa. BMC Vet. Res. 2017; 13: 299.
[64] Shaltout,. A. (2000): Protozoal Foodborne Pathogens in some Meat Products. Assiut Vet. Med. J. 42 (84): 54-59.
[65] Didkowska A., Orłowska B., Krajewska-Wędzina M., Krzysiak M., Bruczyńska M., Wiśniewski J., Anusz K. Intra-palpebral tuberculin skin test and interferon gamma release assay in diagnosing tuberculosis due to Mycobacterium caprae in European Bison (Bison bonasus) Pathogens. 2022; 11: 260.
[66] Shaltout,. A. (2001): Quality evaluation of sheep carcasses slaughtered at Kalyobia abattoirs. Assiut Veterinary Medical Journal, 46(91): 150-159.
[67] Jaouad B. Ph. D. Thesis. Iowa State University; Ames, IA, USA: 1993. Mycobacterium bovis Infection in Cattle in Morocco: Preparation and Evaluation of Chemical Extracts for Use in Detection of Immune Responses.
[68] Shaltout, F. A. (2003): Yersinia Enterocolitica in some meat products and fish marketed at Benha city. The Third international conference Mansoura 29-30 April.
[69] Kuria J. K. Bacterial Cattle Diseases. IntechOpen; London, UK: 2019. Diseases Caused by Bacteria in Cattle: Tuberculosis.
[70] Shaltout,. A. and Abdel Aziz,. M. (2004): ESCHERICHIA COLI STRAINS IN SLAUGHTERED ANIMALS AND THEIR PUBLIC HEALTH IMPORTENCE. J. Egypt. Vet. Med. Association 64(2): 7-21.
[71] Mittal M., Chakravarti S., Sharma V., Sanjeeth B. S., Churamani C. P., Kanwar N. S. Evidence of presence of Mycobacterium tuberculosis in bovine tissue samples by multiplex PCR: Possible relevance to reverse zoonosis. Transbound. Emerg. Dis. 2014; 61: 97–104.
[72] Shaltout,. A., Amin, R., Marionet, Z., Nassif and Shimaa, Abdel-wahab (2014): Detection of aflatoxins in some meat products. Benha veterinary medical journal, 27(2): 368-374.
[73] Pollock J. M., Neill S. D. Mycobacterium bovis infection and tuberculosis in cattle. Vet. J. 2002; 163: 115–127.
[74] Shaltout, A. and Afify, Jehan Riad, M and Abo Elhasan, Asmaa, A. (2012): Improvement of microbiological status of oriental sausage. Journal of Egyptian Veterinary Medical Association 72(2): 157-167.
[75] Kassa G. M., Abebe F., Worku Y., Legesse M., Medhin G., Bjune G., Ameni G. Tuberculosis in goats and sheep in Afar Pastoral Region of Ethiopia and isolation of Mycobacterium tuberculosis from goat. Vet. Med. Int. 2012; 2012: 869146.
[76] Shaltout, F. A. and Edris, A. M. (1999): Contamination of shawerma with pathogenic yeasts. Assiut Veterinary Medical Journal, 40(64): 34-39.
[77] Pascual-Linaza A. V., Gordon A. W., Stringer L. A., Menzies F. D. Efficiency of slaughterhouse surveillance for the detection of bovine tuberculosis in cattle in Northern Ireland. Epidemiol. Infect. 2017; 145: 995–1005.
[78] Shaltout, F. A.; Salem, R. Eldiasty, E.; and Diab, Fatema. (2016): Mycological evaluation of some ready to eat meat products with special reference to molecular chacterization. Veterinary Medical Journal -Giza 62(3) 9-14.
[79] Broughan J. M., Judge J., Ely E., Delahay R. J., Wilson G., Clifton-Hadley R. S., Goodchild A. V., Bishop H., Parry J. E., Downs S. H. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 2016; 144: 2899–2926.
[80] Shaltout, F. A.; Elshater, M. and Wafaa, Abdelaziz (2015): Bacteriological assessment of street vended meat products sandwiches in Kalyobia Governorate. Benha Vet. Med. J. 28 (2): 58-66.
[81] Cvetkovikj I., Mrenoshki S., Krstevski K., Djadjovski I., Angjelovski B., Popova Z., Janevski A., Dodovski A., Cvetkovikj A. Bovine tuberculosis in the Republic of Macedonia: Postmortem, microbiological and molecular study in slaughtered reactor cattle. Maced. Vet. Rev. 2017; 40: 43–52.
[82] Shaltout,. A. and Ibrahim, H. M. (1997): Quality evaluation of luncheon and Alexandrian sausage. Benha Vet. Med. J. 10(1): 1-10.
[83] Ameni G., Vordermeier M., Firdessa R., Aseffa A., Hewinson G., Gordon S. V., Berg S. Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia. Vet. J. 2011; 188: 359–361.
[84] Shaltout,. A., Amani M. Salem, A. H. Mahmoud, K. A (2013): Bacterial aspect of cooked meat and offal at street vendors level. Benha veterinary medical journal, 24(1): 320-328.
[85] Oreiby A. F., Hegazy Y. M., Al-Gaabary M. H., Osman S. A., Marzok M. A., Abushhiwaa M. Studies on clinical identification, elisa, bacteriological isolation, PCR and x-ray radiography for diagnosis of ovine caseous lymphadenitis. J. Anim. Vet. Adv. 2015; 14: 250–253.
[86] Shaltout,. A. and Salem, R. M. (2000): Moulds, aflatoxin B1 and Ochratoxin A in Frozen Livers and meat products. Vet. Med. J. Giza 48(3): 341-346.
[87] Murai K., Tizzani P., Awada L., Mur L., Mapitse N. J., Caceres P. Panorama 2019-1: Bovine tuberculosis: Global distribution and implementation status of prevention and control measures according to WAHIS data. OIE Bull. 2019; 1: 3.
[88] Shaltout, F. A.; Salem, R. M; El-diasty, Eman and Fatema, A. H. Diab. (2016): Mycological evaluation of some ready to eat meat products with special reference to molecular characterization. Veterinary Medical Journal – Giza, 62(3): 9-14.
[89] Brahma D., Narang D., Chandra M., Filia G., Singh A., Singh S. T. Diagnosis of Bovine Tuberculosis by Comparative Intradermal Tuberculin Test, Interferon Gamma Assay and esxB (CFP-10) PCR in Blood and Lymph Node Aspirates. Open J. Vet. Med. 2019; 9: 55–65.
[90] Shaltout FA, Reham A. Amin, Marionette Z. Nassif2, Shimaa A. Abd-Elwahab (2014): Detection of aflatoxins in some meat products. BENHA VETERINARY MEDICAL JOURNAL, VOL. 27, NO. 2: 368-374, DECEMBER 2014.
[91] Didkowska A., Orłowska B., Krajewska-Wędzina M., Augustynowicz-Kopeć E., Brzezińska S., Żygowska M., Wiśniewski J., Kaczor S., Welz M., Olech W., et al. Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus) Ann. Agric. Environ. Med. 2021; 28: 575–578.
[92] Shaltout,. A.; Hanan M. Lamada, Ehsan A. M. Edris. (2020): Bacteriological examination of some ready to eat meat and chicken meals. Biomed J Sci & Tech Res., 27(1): 20461-20465.
[93] Koch R. Die aetiologie der tuberkulose. Berl. Klin. Wochenschr. 1882; 19: 221–230.
[94] Edris,. M., Hassan,. A., Shaltout,. A. and Elhosseiny, S (2012): Detection of E. coli and Salmonella organisms in cattle and camel meat. BENHA VETERINARY MEDICAL JOURNAL, 24(2): 198-204.
[95] Ibrahim S., Danbirni S., Abubakar U. B., Usman A., Saidu A. S., Abdulkadir A. Estimates of Mycobacterial Infections Based on Abattoir Surveillance in Two North-Eastern States of Nigeria. Acta Sci. Microbiol. 2018; 1: 60–65.
[96] Hassanin, F. S; Shaltout,. A. and, Mostafa E. M (2013): Parasitic affections in edible offal. Benha Vet. Med. J. 25(2): 34-39.
[97] Markey B., Leonard F., Archambault M., Cullinane A., Maguire D. Clinical Veterinary Microbiology e-Book. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013.
[98] Ebeed Saleh, Fahim Shaltout, Essam Abd Elaal (2021); Effect of some organic acids on microbial quality of dressed cattle carcasses in Damietta abattoirs, Egypt. Damanhour Journal of Veterinary Sciences 5(2): 17-20.
[99] McCallan L., McNair J., Skuce R., Branch B. A Review of the Potential Role of Cattle Slurry in the Spread of Bovine Tuberculosis. Agri-food and Biosciences Institute; Belfast, UK: 2014.
[100] Hassanin, F. S; Hassan, M. A; Shaltout F. A.. and Elrais-Amina, M (2014): CLOSTRIDIUM PERFRINGENS IN VACUUM PACKAGED MEAT PRODUCTS. BENHA VETERINARY MEDICAL JOURNAL, 26(1): 49-53.
[101] Taylor S. J., Ahonen L. J., de Leij F. A., Dale J. W. Infection of Acanthamoeba castellanii with Mycobacterium bovis and M. bovis BCG and survival of M. bovis within the amoebae. Appl. Environ. Microbiol. 2003; 69: 4316–4319.
[102] Hassan, M. A and Shaltout, F. A. (2004): Comparative Study on Storage Stability of Beef, Chicken meat, and Fish at Chilling Temperature. Alex. J. Vet. Science, 20(21): 21-30.
[103] Mukundan H., Chambers M., Waters R., Larsen M. H., editors. Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals: The Many Hosts of Mycobacteria. CABI; Oxfordshire, UK: 2015. Immunopathogenesis of Mycobacterium bovis Infection of Cattle; p. 136.
[104] Edris, A. M.; Shaltout, F. A. and Abd Allah, A. M. (2005): Incidence of Bacillus cereus in some meat products and the effect of cooking on its survival. Zag. Vet. J. 33(2): 118-124.
[105] Liebana E., Johnson L., Gough J., Durr P., Jahans K., Clifton-Hadley R., Downs S. H. Pathology of naturally occurring bovine tuberculosis in England and Wales. Vet. J. 2008; 176: 354–360.
[106] Waters W. R. Large Animal Internal Medicine-e-Book. Elsevier; Amsterdam, The Netherlands: 2015. Bovine Tuberculosis; pp. 633–636. Chapter 31.
[107] Hazaa, Shaltout, F. A., Mohamed El-Shater (2019): Identification of Some Biological Hazards in Some Meat Products. Benha Veterinary Medical Journal 37(2) 27-31.
[108] Stear M. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees) 5th Edn. Volumes 1 and 2. World Organization for Animal Health 2004. ISBN 92 9044 622 6.€ 140. Parasitology. 2005; 130: 727.
[109] Elnaggar M. M., Abdellrazeq G. S., Elsisy A., Mahmoud A. H., Shyboub A., Sester M., Davis W. C. Evaluation of antigen specific interleukin-1β as a biomarker to detect cattle infected with Mycobacterium bovis. Tuberculosis. 2017; 105: 53–59.
[110] De la Rua-Domenech R., Goodchild A. T., Vordermeier H. M., Hewinson R. G., Christiansen K. H., Clifton-Hadley R. S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006; 81: 190–210.
[111] Picasso-Risso C., Grau A., Bakker D., Nacar J., Mínguez O., Perez A., Alvarez J. Association between results of diagnostic tests for bovine tuberculosis and Johne’s disease in cattle. Vet. Rec. 2019; 185: 693.
[112] Saif,., Saad S. M., Hassanin, F. S; Shaltout, F. A., Marionette Zaghlou (2019); Prevalence of methicillin-resistant Staphylococcus aureus in some ready-to-eat meat products. Benha Veterinary Medical Journal 37(2019) 12-15.
[113] Parlane N. A., Chen S., Jones G. J., Vordermeier H. M., Wedlock D. N., Rehm B. H., Buddle B. M. Display of antigens on polyester inclusions lowers the antigen concentration required for a bovine tuberculosis skin test. Clin. Vaccine Immunol. 2016; 23: 19–26.
[114] Gaafar, Hassanin, F. S; Shaltout, F. A., Marionette Zaghloul (2019): Molecular detection of enterotoxigenic Staphylococcus aureus in some ready to eat meat-based sandwiches. Benha Veterinary Medical Journal 37(2) 22-26.
[115] Picasso-Risso C., Alvarez J., VanderWaal K., Kinsley A., Gil A., Wells S. J., Perez A. Modelling the effect of test-and-slaughter strategies to control bovine tuberculosis in endemic high prevalence herds. Transbound. Emerg. Dis. 2021; 68: 1205–1215.
[116] Shaltout FA, El-Toukhy EI and Abd El-Hai MM. (2019): Molecular Diagnosis of Salmonellae in Frozen Meat and Some Meat Products. Nutrition and Food Technology Open Acces (1): 1-6.
[117] El-Sawalhy A. Veterinary Infectious Diseases in Domestic Animals. 3rd ed. Vetbook; Cairo, Egypt: 2012. pp. 305–308.
[118] Edris, A. M.; Shaltout, F. A.; Salem, G. H. and El-Toukhy,. I. (2011): Incidence and isolation of Salmonellae from some meat products. Benha University, aculty of Veterinary Medicine, Fourth Scientific Conference 25-27th May 2011Veterinary Medicine and Food Safety) 172-179 benha, Egypt.
Cite This Article
  • APA Style

    Shaltout, F. (2024). The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis. International Journal of Food Engineering and Technology, 8(1), 8-15. https://doi.org/10.11648/j.ijfet.20240801.12

    Copy | Download

    ACS Style

    Shaltout, F. The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis. Int. J. Food Eng. Technol. 2024, 8(1), 8-15. doi: 10.11648/j.ijfet.20240801.12

    Copy | Download

    AMA Style

    Shaltout F. The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis. Int J Food Eng Technol. 2024;8(1):8-15. doi: 10.11648/j.ijfet.20240801.12

    Copy | Download

  • @article{10.11648/j.ijfet.20240801.12,
      author = {Fahim Shaltout},
      title = {The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis},
      journal = {International Journal of Food Engineering and Technology},
      volume = {8},
      number = {1},
      pages = {8-15},
      doi = {10.11648/j.ijfet.20240801.12},
      url = {https://doi.org/10.11648/j.ijfet.20240801.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijfet.20240801.12},
      abstract = {The Slaughter house is the place in which the animals are slaughtered for human consumption. The Slaughter house plays important role in prevention of zoonotic diseases between animals and humans like Mycobacterium tuberculosis as reemerging foodborne illness and also prevent infectious diseases between animals. Bovine Mycobacterium tuberculosis is caused by a species of pathogenic Gram positive, acid fast stain bacteria in the Mycobacteriaceae family. the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness tuberculosis bacteria has an waxy cover on its surface primarily due to the presence of acid called mycolic which refers the cells impervious to Gram staining, and as a result, the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness may appear weakly Gram-positive. Acid-fast bacilli by using certain stains called Ziehl Nielsen, or through using stain called fluorescent such as aura mine are used to identify the cause of Bovine tuberculosis as reemerging foodborne illness with a microscope. The Bacteria cause Bovine tuberculosis as a reemerging foodborne illness is aerobic bacteria and needs high concentrations of oxygen. Mainly this bacteria is pathogenic to human and mammal's respiratory system, it infects the lungs. The most diagnostic means for Bovine tuberculosis as a reemerging foodborne illness are the tuberculin skin examination, stain of acid-fast, laboratory culture, and through using polymerase chain reaction method.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Slaughter House and the Re-emerging Foodborne Illness with Special Reference to Bovine Tuberculosis
    AU  - Fahim Shaltout
    Y1  - 2024/02/20
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ijfet.20240801.12
    DO  - 10.11648/j.ijfet.20240801.12
    T2  - International Journal of Food Engineering and Technology
    JF  - International Journal of Food Engineering and Technology
    JO  - International Journal of Food Engineering and Technology
    SP  - 8
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2640-1584
    UR  - https://doi.org/10.11648/j.ijfet.20240801.12
    AB  - The Slaughter house is the place in which the animals are slaughtered for human consumption. The Slaughter house plays important role in prevention of zoonotic diseases between animals and humans like Mycobacterium tuberculosis as reemerging foodborne illness and also prevent infectious diseases between animals. Bovine Mycobacterium tuberculosis is caused by a species of pathogenic Gram positive, acid fast stain bacteria in the Mycobacteriaceae family. the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness tuberculosis bacteria has an waxy cover on its surface primarily due to the presence of acid called mycolic which refers the cells impervious to Gram staining, and as a result, the causative agent bacteria of Bovine tuberculosis as reemerging foodborne illness may appear weakly Gram-positive. Acid-fast bacilli by using certain stains called Ziehl Nielsen, or through using stain called fluorescent such as aura mine are used to identify the cause of Bovine tuberculosis as reemerging foodborne illness with a microscope. The Bacteria cause Bovine tuberculosis as a reemerging foodborne illness is aerobic bacteria and needs high concentrations of oxygen. Mainly this bacteria is pathogenic to human and mammal's respiratory system, it infects the lungs. The most diagnostic means for Bovine tuberculosis as a reemerging foodborne illness are the tuberculin skin examination, stain of acid-fast, laboratory culture, and through using polymerase chain reaction method.
    
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Food Control Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt

  • Sections