| Peer-Reviewed

Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm

Received: 18 May 2020     Accepted: 4 June 2020     Published: 21 September 2020
Views:       Downloads:
Abstract

In an energy environment with multiple production sources, operators are generally confronted with the optimal choice of sources which minimizes polluting gas emissions, losses and marginal production costs while meeting the contractual requirements for maintaining voltage in the ranges required. The present work consisted of optimizing an energy mix in the presence of multi-STATCOM in an interconnected network. Indeed, the (DEE) is a concrete real time problem in electrical energy production systems. This paper shows the impact of STATCOM on static DEE (DEES) and on dynamic DEE (DEED) using the modern genetic algorithm of type U-NSGA-III, which is based on non-dominance sorting. The optimal positioning of two STATCOMs in the application network associated with dynamic dispatching has contributed to the reduction of the total production cost, toxic gas emissions, active losses and then to the improvement of the voltage profiles and the transit of power in the branches. It is observed that the combination of DEED with the optimal positioning of FACTS in an interconnected network constitutes an efficient technico-ecological means to act in the direction of reduction on the triplet consisting of (gas emissions, losses, production cost). The relevance of the results obtained compared to the real case of operating the CEB's interconnected network, justifies the performance of the algorithmic tools developed in the context of this work.

Published in American Journal of Electrical Power and Energy Systems (Volume 9, Issue 5)
DOI 10.11648/j.epes.20200905.11
Page(s) 74-81
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Environmental Economic Dispatching, Dynamic, Static, STATCOM, UNSGA-III, Multi-criteria Optimization, Interconnected Network, Transmission Network

References
[1] Khamed OKBA. Dispatching économique dynamique des réseaux électriques par les méthodes méta-heuristiques. Mémoire de Master en réseaux électriques, Université Mohamed Khider Biskra, 2013.
[2] E. Ntom MENTSOUGA, Salomé NDJAKOMO, D. E. Mbadjoun WAPET, and Ngoffe S. PERABI. Dispatching économique et environnemental par une approche du réseau de neurones de hopfield combinée à la méthode de dichotomie. Sciences, Technologies et Développement, Edition spéciale, 17: 147–150, Juillet 2016. https://www.researchgate.net/publication/306056042.
[3] M. A. ABIDO. Environmental/economic power dimatch using multiobjective evolutionary algorithms: A comparative study. AIEE Transactions, pages 920–925, 2003.
[4] ZEGGAR SEIF-EDDINE, «Dispatching Economique D’Energie Electrique Par Essaims De Particules Et Algorithmes Génétiques», thèse de master, Université de Constantine I, 2013.
[5] L. H. WU, Y. N. WANG, X. F. YUAN, and S. W. ZHOU. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electric Power Systems Research, 80: 1171–1181, May 2010. doi: 10.1016/j.epsr.2010.03.010.
[6] Shanhe JIANG, Zhicheng JI, and Yanxia SHEN. A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Electrical Power and Energy Systems, 55: 628–644, 2014. http://dx.doi.org/10.1016/j.ijepes.2013.10.006.
[7] Ngoffe Stève PERABI, Imano Adolphe MOUKENGUE, Essiane Salomé NDJAKOMO, and Ondoa Grégoire ABESSOLO. Résolution du problème d’engagement d’unités de production d’énergie électrique, de dispatching économique et environnemental sélectif par la méthode des couloirs d’observations. Afrique SCIENCE, 11: 74–85, 2015.
[8] A. OLOULADE, A. MOUKENGUE IMANO, F. FIFATIN, S. GANYE, R. BADAROU, A. VIANNOU, H. TAMADAHO. Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm. International Journal of Electrical Components and Energy Conversion. 5. 10-19. DOI: 10.11648/j.ijecec.20190501.13.
[9] A. OLOULADE, A. MOUKENGUE IMANO, A. VIANNOU, and H. TAMADAHO. Optimisation multi-critère du placement d’un d-statcom dans un réseau de distribution par les colonies de fourmis. SYMPOSIUM DE GENIE ELECTRIQUE, july 2018.
[10] Chintalapudi V. SURESH, S. SIVANAGARAJU, and Rao J. VISWANATHA. Multi-area multi-fuel economic–emission dispatch using a generalized unified power flow controller under practical constraints. Arab J Sci Eng, december 2014. DOI: 10.1007/s13369-014-1527-3.
[11] S. VIJAYARAJ and R. K. SANTHI. Multi-area economic dispatch with gupfc using improved bat algorithm. Asian Journal of Applied Sciences, 04 (05): 1217–1242, october 2016.
[12] Sekharan SREEJITH and Simon P. SISHAJ. Cost benefit analysis on svc and upfc in a dynamic economic dispatch problem. International Journal of Energy Sector Management, 8 (3): 395–428, 2014. http://dx.doi.org/10.1108/IJESM-05-2013-0010.
[13] Sekharan SREEJITH, Velamuri SURESH, and P. PONNAMBALAM. Static economic dispatch incorporating upfc using artificial bee colony algorithm. pages 757–769, 2016.
[14] P. ACHARJEE. Optimal power flow with upfc using security constrained self-adaptive differential evolutionary algorithm for restructured power system. Electrical Power and Energy Systems, 76: 69–81, 2016. http://dx.doi.org/10.1016/j.ijepes.2015.09.025.
[15] Léré Mitterand DEGUENON, Optimisation de la marge de stabilité de tension d’un réseau électrique par insertion de D-FACTS à l’aide du NSGA-II: cas du départ de Cotonou 4, mai 2018.
[16] Garima Choudhary et al., Optimal placement of STATCOM for improving voltage profile and reducing losses using crow search algorithm, International Conference on Control, Computing, Communication and Materials, 2016, doi: 978-1-4673-9084-2/16.
[17] A. OLOULADE, Contribution à l’optimisation multicritère du fonctionnement d’un réseau électrique de distribution par le placement optimal de dispositifs FACTS et la reconfiguration de sa topologie, Thèse de doctorat soutenu publiquement le 10 Décembre 2019, Université d’Abomey-Calavi.
Cite This Article
  • APA Style

    Arouna Oloulade, Adolphe Moukengue Imano, François Xavier Fifatin, Auriole Prudence Omoremy, Amédée Ganye, et al. (2020). Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm. American Journal of Electrical Power and Energy Systems, 9(5), 74-81. https://doi.org/10.11648/j.epes.20200905.11

    Copy | Download

    ACS Style

    Arouna Oloulade; Adolphe Moukengue Imano; François Xavier Fifatin; Auriole Prudence Omoremy; Amédée Ganye, et al. Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm. Am. J. Electr. Power Energy Syst. 2020, 9(5), 74-81. doi: 10.11648/j.epes.20200905.11

    Copy | Download

    AMA Style

    Arouna Oloulade, Adolphe Moukengue Imano, François Xavier Fifatin, Auriole Prudence Omoremy, Amédée Ganye, et al. Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm. Am J Electr Power Energy Syst. 2020;9(5):74-81. doi: 10.11648/j.epes.20200905.11

    Copy | Download

  • @article{10.11648/j.epes.20200905.11,
      author = {Arouna Oloulade and Adolphe Moukengue Imano and François Xavier Fifatin and Auriole Prudence Omoremy and Amédée Ganye and Ramanou Badarou and Antoine Viannou and Mahamoud Tanimomon},
      title = {Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm},
      journal = {American Journal of Electrical Power and Energy Systems},
      volume = {9},
      number = {5},
      pages = {74-81},
      doi = {10.11648/j.epes.20200905.11},
      url = {https://doi.org/10.11648/j.epes.20200905.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.epes.20200905.11},
      abstract = {In an energy environment with multiple production sources, operators are generally confronted with the optimal choice of sources which minimizes polluting gas emissions, losses and marginal production costs while meeting the contractual requirements for maintaining voltage in the ranges required. The present work consisted of optimizing an energy mix in the presence of multi-STATCOM in an interconnected network. Indeed, the (DEE) is a concrete real time problem in electrical energy production systems. This paper shows the impact of STATCOM on static DEE (DEES) and on dynamic DEE (DEED) using the modern genetic algorithm of type U-NSGA-III, which is based on non-dominance sorting. The optimal positioning of two STATCOMs in the application network associated with dynamic dispatching has contributed to the reduction of the total production cost, toxic gas emissions, active losses and then to the improvement of the voltage profiles and the transit of power in the branches. It is observed that the combination of DEED with the optimal positioning of FACTS in an interconnected network constitutes an efficient technico-ecological means to act in the direction of reduction on the triplet consisting of (gas emissions, losses, production cost). The relevance of the results obtained compared to the real case of operating the CEB's interconnected network, justifies the performance of the algorithmic tools developed in the context of this work.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Multi-point Analysis of Economic, Environmental, Static and Dynamic Dispatching of an Energy Mix in the Presence of STATCOM by the U-NSGA-III Genetic Algorithm
    AU  - Arouna Oloulade
    AU  - Adolphe Moukengue Imano
    AU  - François Xavier Fifatin
    AU  - Auriole Prudence Omoremy
    AU  - Amédée Ganye
    AU  - Ramanou Badarou
    AU  - Antoine Viannou
    AU  - Mahamoud Tanimomon
    Y1  - 2020/09/21
    PY  - 2020
    N1  - https://doi.org/10.11648/j.epes.20200905.11
    DO  - 10.11648/j.epes.20200905.11
    T2  - American Journal of Electrical Power and Energy Systems
    JF  - American Journal of Electrical Power and Energy Systems
    JO  - American Journal of Electrical Power and Energy Systems
    SP  - 74
    EP  - 81
    PB  - Science Publishing Group
    SN  - 2326-9200
    UR  - https://doi.org/10.11648/j.epes.20200905.11
    AB  - In an energy environment with multiple production sources, operators are generally confronted with the optimal choice of sources which minimizes polluting gas emissions, losses and marginal production costs while meeting the contractual requirements for maintaining voltage in the ranges required. The present work consisted of optimizing an energy mix in the presence of multi-STATCOM in an interconnected network. Indeed, the (DEE) is a concrete real time problem in electrical energy production systems. This paper shows the impact of STATCOM on static DEE (DEES) and on dynamic DEE (DEED) using the modern genetic algorithm of type U-NSGA-III, which is based on non-dominance sorting. The optimal positioning of two STATCOMs in the application network associated with dynamic dispatching has contributed to the reduction of the total production cost, toxic gas emissions, active losses and then to the improvement of the voltage profiles and the transit of power in the branches. It is observed that the combination of DEED with the optimal positioning of FACTS in an interconnected network constitutes an efficient technico-ecological means to act in the direction of reduction on the triplet consisting of (gas emissions, losses, production cost). The relevance of the results obtained compared to the real case of operating the CEB's interconnected network, justifies the performance of the algorithmic tools developed in the context of this work.
    VL  - 9
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Electronic, Electrotechnic, Automatic, Telecommunications Laboratory (LEEAT), University of Douala, Douala, Cameroon

  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Polytechnic School of Abomey-Calavi (EPAC), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Thermophysic Characterization of Materials and Energy Mastering, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Sections