| Peer-Reviewed

Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast

Received: 16 November 2021    Accepted: 6 December 2021    Published: 24 December 2021
Views:       Downloads:
Abstract

Climate change is a reality that affects several climate variables including precipitation. This change and the variability of the climate are considered to be the greatest challenges facing humanity in the decades to come, on all geographic scales and in all economic sectors. In this context of severe climate change, it will be judicious to review the sizing parameters of hydraulic structures. The determination of hydrological standards is necessary within the framework of development projects for the design of hydraulic structures and the storm water management. The objective of this study is to update the parameters of the ORSTOM and CIEH methods. These are annual rainfall normals, extreme rainfall norms, extreme rainfall quantiles as well as the extreme rainfall gradex. The study carried out was based on annual maximum daily rainfall data and annual rainfall data collected over the period 1931-2020 from twenty-six (26) rainfall stations. The methodological approach is based on the one hand on the evaluation of the normals (normals of annual rainfall, norms of extreme rainfall) and on the other hand on the determination of the quantiles of the daily maximum annuals. These quantiles were used to assess the extreme rainfall gradex. The annual rainfall norms evaluated over the period 1931-2020 vary between 1,180 and 1,457.4 mm. As for the normals of the maximum daily rains, they oscillate between 73.61 mm (Agnibilékro) and 136.59 mm (Tabou) with an average of 94.57 mm. The 10-year return period quantiles evaluated over the period 1931-2020 vary between 103 mm (Dimbokro) and 222 mm (Tiassalé) with an average of 143.6 mm. As for the centennial quantiles, they oscillate between 132 mm (Dimbokro) and 326 mm (Tiassalé) with an average of 211.5 mm. An analysis of the extreme rainfall gradex revealed values fluctuating between 0.28 (Dimbokro) and 0.71 (Guiglo) with an average of 0.47 on Ivorian territory. The gradex coefficients determined are all greater than the regional value of 0.38 defined by ORSTOM except for the Dimbokro station (0.28). Indeed, the calculated gradex coefficient biases are all positive (ranging from +2.63 to + 86.84%) except that of Dimbokro (-26.32%). The use of the regional value of 0.38 reflects an under designing of the values of the gradex coefficient for the whole country except the Dimbokro station.

Published in Engineering and Applied Sciences (Volume 6, Issue 6)
DOI 10.11648/j.eas.20210606.14
Page(s) 125-137
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Empirical Methods of ORSTOM and CIEH, Hydrological Standards, Ivory Coast

References
[1] Panthou G. (2013). Analyse des extrêmes pluviométriques en Afrique de l’Ouest et de leur évolution au cours des 60 dernières années. Thèse de Doctorat de l’Université de Grenoble, Terre Univers Environnement, 282p.
[2] Soro G. (2011). Modélisation statistique des pluies extrêmes en Côte d’Ivoire. Thèse de Doctorat de l’Université d’Abobo-Adjamé, Sciences et Gestion de l’Environnement, 185p.
[3] Kouassi A. M., Nassa R. A. K., Koffi Y. B., Kouamé K. F., Biemi J. (2018). Modélisation statistique des pluies maximales annuelles dans le District d’Abidjan (Sud de la Côte d’Ivoire). Revue des Sciences de l’Eau, n°31, Vol 2, pp. 147-160.
[4] Benkhaled A. (2007). Distributions statistiques des pluies maximales annuelles dans la région du Cheliff: comparaison des techniques et des résultats. Courrier du Savoir, n°8, pp. 83 -91.
[5] Beniston M., Rial J., Pielke R. A., Claussen M., Canadell J., Cox P., Held H. (2007). Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Climatic Change, n° 65, Vol 1, pp. 1–38.
[6] Katz R. and Brown B. (1992). Extreme events in a changing climate: variability is more important than averages. Climatic change, n°21, Vol 3, pp. 289–302.
[7] PNUD. (2009). Rapport Mondial sur le développement humain. Lever les barrières Mobilité et développement humains, New York, Programme des Nations Unies pour le Développement, 45p.
[8] Brunet-Moret Y. (1967). Etude générale des averses exceptionnelles en Afrique occidentale. Comité Interafricain d’Etudes Hydrauliques, Publications ORSTOM, Ouagadougou, 20p.
[9] CIEH (1985). Etude des pluies journalières de fréquence rare dans les pays membres du CIEH. Rapport de synthèse, 58p.
[10] Comité Français des Grands Barrages (CFGB) (1994). Les crues de projet de barrages: méthode du gradex. 18ème congrès CIGB/ICOLD, «Barrages et Réservoirs», 2, novembre 1994, 96p.
[11] Nka N. B. (2016). Contribution à l'actualisation des normes hydrologiques en relation avec les changements climatiques et Environnementaux en Afrique de l'Ouest. Thèse de Doctorat, Institut International d’Ingénierie de l’Eau et de l’Environnement (2IE) - Université Pierre et Marie-curie (UPMC), 214p.
[12] Brou Y. T. (2005). Climat, mutations socio-économiques et paysages en Ivory Coast. Mémoire de synthèse des activités scientifiques présenté en vue de l’obtention de l'Habilitation à.
[13] Goula B. T. A., Konan B., Brou Y., Savane I., Vamoryba F., Srohourou B. (2007). Estimation des pluies exceptionnelles journalières en zone tropicale: cas de la Côte d’Ivoire par comparaison des lois Lognormale et de Gumbel. Hydrological Sciences Journal, n°52, Vol 1, pp. 49-67.
[14] Nassa R. A. K., Kouassi A. M., Bossa S. J. (2021). Analysis of climate change impact on the statistical adjustment models of extreme rainfall case of Ivory Coast. Larhyss Journal, n°46 pp. 21-48.
[15] Sighomnou D. (2004). Analyse et redéfinition des régimes climatiques et hydrologiques du Cameroun: perspectives d’évolution des ressources en eau. Thèse de Doctorat d’Etat, Université de Yaoundé 1, Cameroun, 279p.
[16] Canellas C., Gibelin A. L., Lassegues P., Kerdoncuff M., Dandin P., Simon P. (2014). Les normales climatiques spatialisées Aurelhy 1981-2010: température et précipitation. Direction de la climatologie. Météo-France; n°7, pp. 47-55.
[17] Tirogo J. M. T. (2008). Analyse technico-économique du choix de la crue de projet pour le dimensionnement des ouvrages hydrauliques routiers. Mémoire pour l’obtention du diplôme d’ingénieur de l’équipement rural, 93p.
Cite This Article
  • APA Style

    Amani Michel Kouassi, Relwinde Abdoul-Karim Nassa, Makouin Aissa Louise Toure. (2021). Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast. Engineering and Applied Sciences, 6(6), 125-137. https://doi.org/10.11648/j.eas.20210606.14

    Copy | Download

    ACS Style

    Amani Michel Kouassi; Relwinde Abdoul-Karim Nassa; Makouin Aissa Louise Toure. Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast. Eng. Appl. Sci. 2021, 6(6), 125-137. doi: 10.11648/j.eas.20210606.14

    Copy | Download

    AMA Style

    Amani Michel Kouassi, Relwinde Abdoul-Karim Nassa, Makouin Aissa Louise Toure. Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast. Eng Appl Sci. 2021;6(6):125-137. doi: 10.11648/j.eas.20210606.14

    Copy | Download

  • @article{10.11648/j.eas.20210606.14,
      author = {Amani Michel Kouassi and Relwinde Abdoul-Karim Nassa and Makouin Aissa Louise Toure},
      title = {Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast},
      journal = {Engineering and Applied Sciences},
      volume = {6},
      number = {6},
      pages = {125-137},
      doi = {10.11648/j.eas.20210606.14},
      url = {https://doi.org/10.11648/j.eas.20210606.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.eas.20210606.14},
      abstract = {Climate change is a reality that affects several climate variables including precipitation. This change and the variability of the climate are considered to be the greatest challenges facing humanity in the decades to come, on all geographic scales and in all economic sectors. In this context of severe climate change, it will be judicious to review the sizing parameters of hydraulic structures. The determination of hydrological standards is necessary within the framework of development projects for the design of hydraulic structures and the storm water management. The objective of this study is to update the parameters of the ORSTOM and CIEH methods. These are annual rainfall normals, extreme rainfall norms, extreme rainfall quantiles as well as the extreme rainfall gradex. The study carried out was based on annual maximum daily rainfall data and annual rainfall data collected over the period 1931-2020 from twenty-six (26) rainfall stations. The methodological approach is based on the one hand on the evaluation of the normals (normals of annual rainfall, norms of extreme rainfall) and on the other hand on the determination of the quantiles of the daily maximum annuals. These quantiles were used to assess the extreme rainfall gradex. The annual rainfall norms evaluated over the period 1931-2020 vary between 1,180 and 1,457.4 mm. As for the normals of the maximum daily rains, they oscillate between 73.61 mm (Agnibilékro) and 136.59 mm (Tabou) with an average of 94.57 mm. The 10-year return period quantiles evaluated over the period 1931-2020 vary between 103 mm (Dimbokro) and 222 mm (Tiassalé) with an average of 143.6 mm. As for the centennial quantiles, they oscillate between 132 mm (Dimbokro) and 326 mm (Tiassalé) with an average of 211.5 mm. An analysis of the extreme rainfall gradex revealed values fluctuating between 0.28 (Dimbokro) and 0.71 (Guiglo) with an average of 0.47 on Ivorian territory. The gradex coefficients determined are all greater than the regional value of 0.38 defined by ORSTOM except for the Dimbokro station (0.28). Indeed, the calculated gradex coefficient biases are all positive (ranging from +2.63 to + 86.84%) except that of Dimbokro (-26.32%). The use of the regional value of 0.38 reflects an under designing of the values of the gradex coefficient for the whole country except the Dimbokro station.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Actualization of Climatic Parameters of the Empirical Methods of ORSTOM and CIEH: Case of Ivory Coast
    AU  - Amani Michel Kouassi
    AU  - Relwinde Abdoul-Karim Nassa
    AU  - Makouin Aissa Louise Toure
    Y1  - 2021/12/24
    PY  - 2021
    N1  - https://doi.org/10.11648/j.eas.20210606.14
    DO  - 10.11648/j.eas.20210606.14
    T2  - Engineering and Applied Sciences
    JF  - Engineering and Applied Sciences
    JO  - Engineering and Applied Sciences
    SP  - 125
    EP  - 137
    PB  - Science Publishing Group
    SN  - 2575-1468
    UR  - https://doi.org/10.11648/j.eas.20210606.14
    AB  - Climate change is a reality that affects several climate variables including precipitation. This change and the variability of the climate are considered to be the greatest challenges facing humanity in the decades to come, on all geographic scales and in all economic sectors. In this context of severe climate change, it will be judicious to review the sizing parameters of hydraulic structures. The determination of hydrological standards is necessary within the framework of development projects for the design of hydraulic structures and the storm water management. The objective of this study is to update the parameters of the ORSTOM and CIEH methods. These are annual rainfall normals, extreme rainfall norms, extreme rainfall quantiles as well as the extreme rainfall gradex. The study carried out was based on annual maximum daily rainfall data and annual rainfall data collected over the period 1931-2020 from twenty-six (26) rainfall stations. The methodological approach is based on the one hand on the evaluation of the normals (normals of annual rainfall, norms of extreme rainfall) and on the other hand on the determination of the quantiles of the daily maximum annuals. These quantiles were used to assess the extreme rainfall gradex. The annual rainfall norms evaluated over the period 1931-2020 vary between 1,180 and 1,457.4 mm. As for the normals of the maximum daily rains, they oscillate between 73.61 mm (Agnibilékro) and 136.59 mm (Tabou) with an average of 94.57 mm. The 10-year return period quantiles evaluated over the period 1931-2020 vary between 103 mm (Dimbokro) and 222 mm (Tiassalé) with an average of 143.6 mm. As for the centennial quantiles, they oscillate between 132 mm (Dimbokro) and 326 mm (Tiassalé) with an average of 211.5 mm. An analysis of the extreme rainfall gradex revealed values fluctuating between 0.28 (Dimbokro) and 0.71 (Guiglo) with an average of 0.47 on Ivorian territory. The gradex coefficients determined are all greater than the regional value of 0.38 defined by ORSTOM except for the Dimbokro station (0.28). Indeed, the calculated gradex coefficient biases are all positive (ranging from +2.63 to + 86.84%) except that of Dimbokro (-26.32%). The use of the regional value of 0.38 reflects an under designing of the values of the gradex coefficient for the whole country except the Dimbokro station.
    VL  - 6
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • National Polytechnic Institute Félix Houphou?t-Boigny (INP-HB), Department of Earth Sciences and Mineral Resources (STeRMi), Laboratory of Civil Engineering, Geosciences and Geographical Sciences, Yamoussoukro, Ivory Coast

  • National Polytechnic Institute Félix Houphou?t-Boigny (INP-HB), Polytechnic Doctoral School (EDP), Yamoussoukro, Ivory Coast

  • National Polytechnic Institute Félix Houphou?t-Boigny (INP-HB), Higher School of Mines and Geology (ESMG), Yamoussoukro, Ivory Coast

  • Sections