| Peer-Reviewed

Spin-Orbit Induced Dynamics in Multilayer Nanostructures

Received: 17 September 2016     Accepted: 17 October 2016     Published: 28 October 2016
Views:       Downloads:
Abstract

Features of the current spin-orbit induced magnetic dynamics in multilayer nanostructures with nonmagnetic heavy metal layers possessing by a strong spin-orbit interaction are studied. These structures include ferromagnetic (F) (antiferromagnetic AF)/normal metal (N) nanostructures based on both conductive and insulating magneticsand heavy normal metals (e. g., FeCoB/Ta, YIG/Pt, Nio/Pt). The spin Hall effect of the conversion of an incoming charge current into a transverse (with respect to the charge current) spin current induces a spin-transfer torque and magnetic dynamics including a magnetic precession and switching. The magneto-dynamic effect of a spin current pumping generation together with the inverse spin Hall effect of conversion of the spin current into the incoming charge current provide the influence of the magnetic dynamics on the incoming charge current. These feedforward and feedback between the incoming charge current and the magnetic dynamics can be the basis for the spin-orbit driven self-sustained auto-oscillations of a magnetic order in the nanostructures. It is shown that the considered magnetic nanostructures possess by properties of controlled microwave radiation attaining tens THz in the antiferromagnetic case. Magnetic-induced changes of the electric resistance in the mentioned nanostructure are considered.

Published in American Journal of Nanosciences (Volume 2, Issue 2)
DOI 10.11648/j.ajn.20160202.11
Page(s) 8-20
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Magnetic Nanostructures, Magnetic Dynamics, Spin Currents, Spin Hall Effects, Feedback, Nano-Oscillations

References
[1] Equation Chapter 1 Section 1L. Zutic, J. Fabian, and S. Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys., vol. 76, pp. 323-413, April 2004.
[2] J.Manchon, H.C. Koo, J. Nitta, S. M. Frolov, and R.A. Duine, “New Perspective for Rashba Spin-Orbit Coupling,” Nature Materials, vol. 36, pp. 871-882, August 2015.
[3] A. Hoffmann, “Spin Hall Effects in Metals,” IEEE Trans. Magn., vol. 49, pp. 5172-5193, October 2013.
[4] Y. Tserkovnyak, A. Brataas, G. E. Bauer, and B. I. Halperin, “Nonlocal magnetization dynamics in ferromagnetic heterostructures,” Rev. Mod. Phys., vol. 77, pp. 1375-1421, October 2005.
[5] E. R. J. Edwards, H. Ulrichs, V. E. Demidov, S. O. Demokritov, and S. Urazhdin, “Parametric excitation of magnetization oscillations controlled by pure spin current,” Phys. Rev. B, vol.86, pp. 134220-134230, October 2012.
[6] L. Liu, C.-F. Pai, Y. Li, D. C. Ralph, and R. A. Buhrman, “Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum,” Science, vol. 336, pp. 555-558, May 2012.
[7] R. H. Liu, W. L. Lim, and S. Urazhdin, “Spectral Characteristics of the Microwave Emission by the Spin Hall Nano-oscillator,” Phys. Rev. Lett., vol. 110, pp. 147601-147605, April 2013.
[8] D. Baither, G. Schmitz, and S.O. Demokritov, “Magnetic nanooscillators driven by pure spin current.,” Nature Mater., vol. 11, pp. 1028–1031, December 2012.
[9] T. Yang, T. Kimura, and Y, Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nature Phys., vol. 4, pp. 851-854, October 2008.
[10] N. Ebrahim-Zaden, and S Urazhdin, “Optimization of Pt-based spin-Hall effect spintronic devices,” Appl. Phys. Lett., vol.102, pp. 132402-132411, April 2013.
[11] N. V. Volkov. PHYS-USP, “Spintronics: manganite-based magnetic tunnel structures,” vol. 55, pp. 250-269, March 2012.
[12] J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett., vol. 83, pp. 1834-1837, August 1999.
[13] E. M. Chudnovsky, “Theory of spin Hall effect,” Phys. Rev. Lett., vol. 99, pp. 206601-206604, November 2007.
[14] I. M. Miron, G. Gaudin, S. Auffer, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardalla, “Current-driven spin torque induced by the Rashba effect in ferromagnetic metal layer,”Nature Materials, vol. 9, pp. 230-234, January 2010.
[15] A. Manchon, and S. Zhang, “Theory of spin torque due to spin-orbit coupling,” Phys. Rev. B., vol. 79, pp. 094422-1-0994422-8,March 2009.
[16] X. Wang, and A. Manchon, “Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction,” Phys. Rev. Lett., vol. 108, pp. 117201-117205, March 2012.
[17] R. Cheng, J.-G. Zhu, and D. Xiao, “Dynamic Feedback in Ferromagnet/Spin-Hall Heterostructures,” Phys Rev. Lett., vol. 117, pp. 097202-097206, August 2016.
[18] H.V. Gomonay, and V. M. Loktev, “Spin transfer and current-induced switching in antiferromagnets,” Phys. Rev. B, vol. 81, pp. 144427-144437, April 2010.
[19] A. Brataas, G. E. W. Bauer, and P. J. Kelly, “Non-collinear magnetoelectronics,”Phys. Rep., vol.427, pp. 157-256, April 2006..
[20] P. Gambardella, and I. M. Miron, “Current-induced spin-orbit torque,” Phil. Trans. R. Soc. A, vol. 369, pp. 3175-3197, July 2011.
[21] Y. Ou, D. C. Ralph, and R. A. Buhrman, “Strong spin Hall effect in the antiferromagnetic PtMo,” Phys. Rev. B, vol. 93, pp. 220405-22017, June 2016.
[22] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, “Electric Manipulation of Spin Relaxation Using the Spin Hall Effect,”Phys. Rev. Lett., vol. 101, 036601-036613, July 2008.
[23] R. Cheng, D. Xiao, and A. Braatas, “Terahertz Antiferromagnetic Spin Hall Nano-Oscillator,” Phys. Rev. Let., vol. 116,pp. 207603-207607, October 2015.
[24] Ya. Tserkovnyak, and S.A. Bender, “Spin Hall phenomenology of magnetic dynamics,” Phys. Rev B, vol. 90, pp. 014428-014435, July 2014.
[25] Ya. Tserkovnyak, A. Brataas, and E.W. Bauer, “Spin pumping and magnetization dynamics in metallic multilayers,” Phys. Rev. B, vol. 66, pp. 224403-224412, November 2002.
[26] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, “Spin Pumping and Spin-Trasfer Torques in Antiferromagnets,” Phys. Rev. Lett., vol. 113, pp. 057601-057614, July 2014.
[27] O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, “Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers,” Phys. Rev. B, vol. 82, pp. 214403-214415, December 2010.
[28] P.W. Brouwer, “Scattering approach to parametric pumping,” Phys. Rev. B, vol. 58, pp. R10135-R10139, October 1998.
[29] V. E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, and S.O. Demokritov, “Magnetic nano-oscillator driven by pure spin current,” Nature Materials, vol. 11, pp. 1028-1031, December 2012.
[30] C.-F. Pai, L. Liu, H. W. Tseng, D. C. Ralph, and R. A. Buhram, “Spin transfer torque devices utilizing the giant spin Hall effect of tungsten,” Appl. Phys. Lett., vol. 101, pp. 082407-082415, November 2012.
[31] K.-W. Kim, J.-H. Moon., K.-J. Lee, and H.-W. Lee, “Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling,” Phys. Rev. Lett., vol. 108, pp. 21722-21731, May 2012.
[32] C. H. Wong, and Ya. Tserkovnyak, “Hydrodynamic theory of coupled current and magnetization dynamics in spin-textured ferromagnets,” Phys. Rev. B, vol.80, pp. 184411-184421, November 2009.
[33] H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, “Scaling of Spin Hall Angle in 3d, 4d and 5d Metals from Y3Fe5O12/Metals Spin Pumping,” Phys Rev. Lett., vol. 112, pp. 197201-197207, May 2014.
[34] A. Brataas, Ya. Tserkovnyak, and E. W. Bauer, and B.I. Halperin, “Spin battery operated by ferromagnetic resonance,” Phys. Rev. B, vol. 66, pp. 060404-060407, February 2002.
[35] N. Vlietstra, J. Shan, V. Castel, B. J. van Wees, and J. B. Youssef, “Spin-Hall magnetoresistance in platinum on yttrium iron garnet: Dependence on platinum thickness and in-plane/out-of-plane magnetization,” Phys. Rev. B, vol. 87, pp. 184421-184433, May2013.
[36] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi. R. Gross, G. E. W. Bauer, S.T.B. Goennenwein, and E. Saitoh, “Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect,” Phys. Rev. Lett., vol. 110, pp. 206601-206614, May 2013.
[37] Y. T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B Goennenwein, E. Saitoh, and G. E. W. Bauer, “Theory of spin Hall magnetoresistance,” Phys. Rev. B, vol. 87, pp. 14411-14424, February 2013.
[38] M. B. Jungfleisch, V. Lauer, R. Neb, A. V. Chumak, and B. Hillebrands, “Improvement of the yttrium iron garnet /platinum interface for spin pumping-based,” Appl. Phys. Lett., vol. 103, pp. 022411-022423, July 2013.
Cite This Article
  • APA Style

    Andrii Korostil, Mykola Krupa. (2016). Spin-Orbit Induced Dynamics in Multilayer Nanostructures. American Journal of Nanosciences, 2(2), 8-20. https://doi.org/10.11648/j.ajn.20160202.11

    Copy | Download

    ACS Style

    Andrii Korostil; Mykola Krupa. Spin-Orbit Induced Dynamics in Multilayer Nanostructures. Am. J. Nanosci. 2016, 2(2), 8-20. doi: 10.11648/j.ajn.20160202.11

    Copy | Download

    AMA Style

    Andrii Korostil, Mykola Krupa. Spin-Orbit Induced Dynamics in Multilayer Nanostructures. Am J Nanosci. 2016;2(2):8-20. doi: 10.11648/j.ajn.20160202.11

    Copy | Download

  • @article{10.11648/j.ajn.20160202.11,
      author = {Andrii Korostil and Mykola Krupa},
      title = {Spin-Orbit Induced Dynamics in Multilayer Nanostructures},
      journal = {American Journal of Nanosciences},
      volume = {2},
      number = {2},
      pages = {8-20},
      doi = {10.11648/j.ajn.20160202.11},
      url = {https://doi.org/10.11648/j.ajn.20160202.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20160202.11},
      abstract = {Features of the current spin-orbit induced magnetic dynamics in multilayer nanostructures with nonmagnetic heavy metal layers possessing by a strong spin-orbit interaction are studied. These structures include ferromagnetic (F) (antiferromagnetic AF)/normal metal (N) nanostructures based on both conductive and insulating magneticsand heavy normal metals (e. g., FeCoB/Ta, YIG/Pt, Nio/Pt). The spin Hall effect of the conversion of an incoming charge current into a transverse (with respect to the charge current) spin current induces a spin-transfer torque and magnetic dynamics including a magnetic precession and switching. The magneto-dynamic effect of a spin current pumping generation together with the inverse spin Hall effect of conversion of the spin current into the incoming charge current provide the influence of the magnetic dynamics on the incoming charge current. These feedforward and feedback between the incoming charge current and the magnetic dynamics can be the basis for the spin-orbit driven self-sustained auto-oscillations of a magnetic order in the nanostructures. It is shown that the considered magnetic nanostructures possess by properties of controlled microwave radiation attaining tens THz in the antiferromagnetic case. Magnetic-induced changes of the electric resistance in the mentioned nanostructure are considered.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Spin-Orbit Induced Dynamics in Multilayer Nanostructures
    AU  - Andrii Korostil
    AU  - Mykola Krupa
    Y1  - 2016/10/28
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajn.20160202.11
    DO  - 10.11648/j.ajn.20160202.11
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 8
    EP  - 20
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20160202.11
    AB  - Features of the current spin-orbit induced magnetic dynamics in multilayer nanostructures with nonmagnetic heavy metal layers possessing by a strong spin-orbit interaction are studied. These structures include ferromagnetic (F) (antiferromagnetic AF)/normal metal (N) nanostructures based on both conductive and insulating magneticsand heavy normal metals (e. g., FeCoB/Ta, YIG/Pt, Nio/Pt). The spin Hall effect of the conversion of an incoming charge current into a transverse (with respect to the charge current) spin current induces a spin-transfer torque and magnetic dynamics including a magnetic precession and switching. The magneto-dynamic effect of a spin current pumping generation together with the inverse spin Hall effect of conversion of the spin current into the incoming charge current provide the influence of the magnetic dynamics on the incoming charge current. These feedforward and feedback between the incoming charge current and the magnetic dynamics can be the basis for the spin-orbit driven self-sustained auto-oscillations of a magnetic order in the nanostructures. It is shown that the considered magnetic nanostructures possess by properties of controlled microwave radiation attaining tens THz in the antiferromagnetic case. Magnetic-induced changes of the electric resistance in the mentioned nanostructure are considered.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Institute of Magnetism of National Academy of Sciences of Ukraine, Kyiv, Ukraine

  • Institute of Magnetism of National Academy of Sciences of Ukraine, Kyiv, Ukraine

  • Sections