| Peer-Reviewed

Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application

Received: 15 September 2015     Accepted: 23 September 2015     Published: 29 September 2015
Views:       Downloads:
Abstract

The cost effective conversion of solar energy into electricity via solar cells remains an ongoing concern of researchers worldwide. The use of polysilicon has been suggested as a possible alternative to achieve this goal. The presence of traps in the grain boundaries having dangling bonds, however, limits the photovoltaic efficiency of solar cells synthesized from polysilicon. The present work constitutes search for optimal processing parameters for the development of polycrystalline silicon solar cells and their large scale manufacturing. The processing parameters depend essentially on the operating temperature, duration of the isothermal heating and the rate of growth of the polysilicon solar cell. These parameter in turn depends highly on the crystallographic states and purity of the material. The optimal processing parameters result in high nucleation rate followed by growth of the silicon grains. This process leads to the crystallization of polysilicon solar cells. In this study the processing parameters for the melting, crystallization and cooling have been optimized. The X-ray diffraction patterns of the samples show the presence of various crystalline phases. The study of crystal orientations by X-ray diffraction patterns shows the crystal orientation along (111), (110) and (100) planes. The (110) and (100) planes are present predominately on the material surface with an advantage for the (110) plane.

Published in American Journal of Nanosciences (Volume 1, Issue 1)
DOI 10.11648/j.ajn.20150101.11
Page(s) 1-4
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Previous article
Keywords

Polycrystalline Silicon, Nucleation and Growth, Crystallographic Orientation, Solar Cells

References
[1] B. Zaidi, B. Hadjoudja, B. Chouial, S. Gagui, H. Felfli, A. Magramene, A. Chibani; Silicon; 7 (2015) 293–295.
[2] B. Zaidi, B. Hadjoudja, H. Felfli, B. Chouial, A. Chibani;Revue de Métallurgie; 108 (2011) 443–446.
[3] B. Zaidi, B. Hadjoudja, B. Chouial, S. Gagui, H. Felfli, A. Chibani; Silicon; 7 (2015) 275–278.
[4] B. Zaidi, B. Hadjoudja, H. Felfli, A. Chibani; Turk. J. Phys.; 35 (2011) 185–188.
[5] R. Kishore, J. L. Pastol, G. Revel; Solar Energy Materials; 19 (1987) 221-236.
[6] A. Eyer, A. Rauber, A. Goetzberger; Optoelec. Devi. Techn.; 5; No 2 (1990) 239-257.
[7] G. Revel, J. L. Pastol, D. Hania, N. D. Huynh; Revue Phys. Appl.; 22 (1987) 519-528.
[8] A. Eyer, N. Shillinger, I. Reis, A. Rauber; J. Cryst. Growth; 104 (1990) 119-125.
[9] P. Gadaud, J. Wopirgard; Revue Phys. Appl.; 23 (1988) 919-924.
[10] S. Pizzini, D. Narducci, M. Root; Revue Phys. Appl.; 13 (1988) 101-104.
[11] A. Laugier, J. A. Roger; « Les Photopiles Solaires » (1981).
[12] P. Andonov, P. Derwin, C. Esling; Revue Phys. Appl.; 22 (1987) 603-612.
[13] M. Zhu, Y. Cao, X. Guo, J. Liu, M. He, K. Sun; Sol. En. Mat. & Solar Cells; 62 (2000) 109-115.
[14] S. Mo, E. Peiner, A. Schlachtzki, R. Klockenbrink, E. R. Weber; Mat. Scien. Eng.; B56 (1998) 37-42.
Cite This Article
  • APA Style

    B. Zaidi, C. Shekhar, B. Hadjoudja, B. Chouial, A. Chibani, et al. (2015). Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application. American Journal of Nanosciences, 1(1), 1-4. https://doi.org/10.11648/j.ajn.20150101.11

    Copy | Download

    ACS Style

    B. Zaidi; C. Shekhar; B. Hadjoudja; B. Chouial; A. Chibani, et al. Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application. Am. J. Nanosci. 2015, 1(1), 1-4. doi: 10.11648/j.ajn.20150101.11

    Copy | Download

    AMA Style

    B. Zaidi, C. Shekhar, B. Hadjoudja, B. Chouial, A. Chibani, et al. Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application. Am J Nanosci. 2015;1(1):1-4. doi: 10.11648/j.ajn.20150101.11

    Copy | Download

  • @article{10.11648/j.ajn.20150101.11,
      author = {B. Zaidi and C. Shekhar and B. Hadjoudja and B. Chouial and A. Chibani and R. Li and M. V. Madhava Rao},
      title = {Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application},
      journal = {American Journal of Nanosciences},
      volume = {1},
      number = {1},
      pages = {1-4},
      doi = {10.11648/j.ajn.20150101.11},
      url = {https://doi.org/10.11648/j.ajn.20150101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20150101.11},
      abstract = {The cost effective conversion of solar energy into electricity via solar cells remains an ongoing concern of researchers worldwide. The use of polysilicon has been suggested as a possible alternative to achieve this goal. The presence of traps in the grain boundaries having dangling bonds, however, limits the photovoltaic efficiency of solar cells synthesized from polysilicon. The present work constitutes search for optimal processing parameters for the development of polycrystalline silicon solar cells and their large scale manufacturing. The processing parameters depend essentially on the operating temperature, duration of the isothermal heating and the rate of growth of the polysilicon solar cell. These parameter in turn depends highly on the crystallographic states and purity of the material. The optimal processing parameters result in high nucleation rate followed by growth of the silicon grains. This process leads to the crystallization of polysilicon solar cells. In this study the processing parameters for the melting, crystallization and cooling have been optimized. The X-ray diffraction patterns of the samples show the presence of various crystalline phases. The study of crystal orientations by X-ray diffraction patterns shows the crystal orientation along (111), (110) and (100) planes. The (110) and (100) planes are present predominately on the material surface with an advantage for the (110) plane.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Optimum Parameters for Obtaining Polycrystalline Silicon for Photovoltaic Application
    AU  - B. Zaidi
    AU  - C. Shekhar
    AU  - B. Hadjoudja
    AU  - B. Chouial
    AU  - A. Chibani
    AU  - R. Li
    AU  - M. V. Madhava Rao
    Y1  - 2015/09/29
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajn.20150101.11
    DO  - 10.11648/j.ajn.20150101.11
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 1
    EP  - 4
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20150101.11
    AB  - The cost effective conversion of solar energy into electricity via solar cells remains an ongoing concern of researchers worldwide. The use of polysilicon has been suggested as a possible alternative to achieve this goal. The presence of traps in the grain boundaries having dangling bonds, however, limits the photovoltaic efficiency of solar cells synthesized from polysilicon. The present work constitutes search for optimal processing parameters for the development of polycrystalline silicon solar cells and their large scale manufacturing. The processing parameters depend essentially on the operating temperature, duration of the isothermal heating and the rate of growth of the polysilicon solar cell. These parameter in turn depends highly on the crystallographic states and purity of the material. The optimal processing parameters result in high nucleation rate followed by growth of the silicon grains. This process leads to the crystallization of polysilicon solar cells. In this study the processing parameters for the melting, crystallization and cooling have been optimized. The X-ray diffraction patterns of the samples show the presence of various crystalline phases. The study of crystal orientations by X-ray diffraction patterns shows the crystal orientation along (111), (110) and (100) planes. The (110) and (100) planes are present predominately on the material surface with an advantage for the (110) plane.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Department of Applied Physics, Amity University, Gurgaon, India

  • Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Department of Chemical Engineering, Louisiana State University, LA, USA

  • Department of Physics, Osmania University, Hyderabad, India

  • Sections