The results of study of the characteristics and parameters of plasma of a high-current nanosecond discharge in atmospheric pressure air between copper electrodes under conditions of strong overstress of the discharge gap are presented. Under such conditions, favorable conditions are created for igniting an atmospheric pressure diffuse discharge in an inhomogeneous electric field. The spatial, electrical and optical characteristics of the discharge, as well as the parameters of the air plasma with small additions of copper vapor are studied. It is shown that this type of discharge can be used for the synthesis of copper oxides nanostructures.
Published in | American Journal of Mechanical and Materials Engineering (Volume 2, Issue 1) |
DOI | 10.11648/j.ajmme.20180201.12 |
Page(s) | 8-14 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Copper Oxides, Nanostructures, Diffuse Discharge
[1] | Apollonov, V. V. and N. V. Pletnev N. V. (2012). Kvantovaya Elektronika 20, 6, 670–674. |
[2] | Abaeva, L. F., Shumskiy, V. I., Petritskaya, E. N., Rogatkin, D. A., P. N. Lyubchenko (2010). Al'manakh klinicheskoy meditsiny 22, 10–16. (in Russian). |
[3] | Bobkov, A. A., Lashkova, N. A., Maximov, A. I., Moshnikov, V. A. and S. S. Nalimova (2017). Fizika i Tekhnika Poluprovodnikov 51, 1, 63–67. |
[4] | Farmanfarmaei, B., RashidianVaziri, M. R. and F. Hajiesmaeilbaigi (2014). Kvantovaya Elektronika 44, 11, 1029–1032. |
[5] | Tyurnina, A. E., Shur, V. Ya., Kozin, R. V., Kuznetsov, D. K., Pryakhina, V. and G. V. Burban (2014). Physics of the Solid State 56, 7, 1431–1437. |
[6] | V. S. Burakov, V. S., Kiris, V. V., Nevar, A. A., Nedelko, M. I. and N. V. Tarasenko (2016) Journal of Applied Spectroscopy 83, 4, 643–649. |
[7] | Rutberg, F. G., Gusarov, V. V., Kolikov, V. A., Voskresenskaya, I. P., Snegov, V. N., Stogov, A. Yu. and I. A. Cherepkova (2012) Technical Physics 57, 12, 1641. |
[8] | Babich, L. P. (2003) Futurepast. Arlington. Virginia. ITS Science and Technоlogy Series, 2, 353. |
[9] | V. F. Tarasenko, Runaway electrons preionized diffuse discharge. New York: Nova Science Publishers Inc., 2014, 578. |
[10] | Erofeev, M. V., Shulepov, M. A. and V. F. Tarasenko (2016) International Journal of Applied and Fundamental Research 1, 8-13. |
[11] | Shuaibov, A. K., Minya, A. I., Enedi, A. L., Shevera, I. V., Gomok, Z. T. and V. V. Danilo ( 2017) Elektronnaya obrabotka materialov 53, 2, 45-49. |
[12] | Shevera, I. V, Minya, A . I., Shuaibov, OK., Danilo, V. . and Z. T. Homoki (2017) Scientific herald of Uzhgorod University. Physics 41, 113-120. |
[13] | Shuaibov, Alexsander, Mynia, Oleksandr, Chuchman, Mykhaylo, Homoki, Zoltan and Vladislav Danylo (2017) Characteristics of overstrained nanosecond discharge in a mixture of air wich copper steam. Proceedings of the XIII International Conference “Electronics and Applied Physics”, Kyiv, Ukraine, Taras Shevchenko National University, 151-152. |
[14] | Babich, L. P., Loiko, T. V. and V. A. Tsukerman (1990) Physics-Uspekhi 33, 7, 521–540. |
[15] | Mesyats, G. A. (1995) Physics-Uspekhi 165, 6, 601-626. |
[16] | Bakst, T. Kh., Tarasenko, V. F., Shut`ko, Yu. V. and M. V. Erofeev (2012) Qantum Electronocs 42, 2, 153-156. |
[17] | Baksht, E. Kh., Burachenko, A. G., Lomaev, M. I., Panchenko, A. N. and V. F. Tarasenko (2015) Kvantovaya Elektronika 45, 4, 366–370. |
[18] | Smith, P. L., Heise, C., Esmond, J. R. and R. L. Kurucz, Atomic Spectral Line Database from CD-ROM 23 of R. L. Kurucz (Smithosian Astrophysical Observatory, Cambridge, 1995. http://cfa-www.harvard.edu/amp). |
[19] | Sansonetti, J. E. and W. C. Martin (2005) J. Phys. Chem. 34, 1559. |
[20] | Shuaibov, A. K. Laslov, G. E. and Ya. Ya. Kozak (2014) Optics and Spectroscopy 116, 4, 552-556. |
[21] | Avtaeva, S. V., Zhdanova, O. S., Pikulev, A. A., Sosnin, E. A. and V. F. Tarasenko, New Direction in Scientific Research and Apрlication of Excilams, Tomsk. STT. Publishing, 2013, 246. |
[22] | Levko, Dmitry and Laxminarayan L. Raja (2016) Physics of Plasmas, 22, 123518. |
[23] | A. N. Gomonai (2015) Journal of Applied Spectroscopy 82, 1, 17-22. |
[24] | Tren’kin, A. A., Karelin, V. I., Shibitov, Yu. M., Blinova, O. M. and I. S. Yasnikov (2017) Technical Physics 87, 9, 1419. |
[25] | http:/www.bolsig.laplace.univ-tlse.fr. |
[26] | Dmitry Levko (2013) Journal of Applied Physics 114, 223302. |
[27] | Tarasenko, V. F., and, S. I. Yakovlenko (2004) Physics-Uspekhi 47, 887–905. |
[28] | Bulychev, N. A., Kazaryan, M. A., Nikiforov, V. N., Shevchenko, S. N., Yakunin, V. G., Timoshenko, V. Yu, Bychenko, A. B. and V. G. Sredin (2016) Technical Physics Letters 42, 5, 495-497. |
[29] | Shevera, I. V., Minya, O. I., Shuiabov, OK., Sichka, M. Yu. Danilo, V. V. and Z. T. Gomoki (2017) Spectra of transmission (absorption) of thin nanostructured films based on Zn, Cu, Fe and their oxides. Proceedings of the international conference of young scientists and post-graduate students, Uzhhorod, 152-153. |
[30] | Zamanova, L. A. and L. A. Alieva (2008) Fizika. Cild XIV, 3, 194-196. |
[31] | Mynia, Oleksandr, Shuaibov, Alexsander, Holomb, Roman, Danylo, Vladislav, Shevera, Ighor, and Volodymyr Mitsa (2017) Synthesis of Nanostructures under Action of the strongly overstrained nanosecond Discharge in the Air atmospheric pressure. Proceedings of the XIII International Conference “Electronics and Applied Physics”, Kyiv, Ukraine, Taras Shevchenko National University, 153-154. |
[32] | Kudryashov, D. A., Gudovskih, A. S., Babichev, A. V., Filimonov, A. V., Mozharov, A. M., Agekyan, V. F., Borisov, E. V., Serov, A. Yu. and N. G. Filosofov (2017) Semiconductors 51, 1, 110–114. |
[33] | O. A. Gololobova (2015)Izvestiya of the Samara Scientific Center of the Russian Academy of Sciences 17, 2, 69-74. |
[34] | Shuaibov, A. К., Minya, A. I., Gomoki, Z. T. and V. V. Danilo, Method of nanostructuring of glass surface in atmospheric pressure air// Patent (utility model) №. 120612, November 10, 2017 Bulletin number №. 21, Uzhgorod National University. |
[35] | Abduev, A. Kh., Asvarov, A. Sh., Akhmedov, A. K., Emirov, R. M. and V. V. Belyaev (2017) JETF letters, 43, 22, 40-47. |
APA Style
Alexander K. Shuaibov, Alexander Y. Minya, Antonina A. Malinina, Alexander N. Malinin, Vladislav V. Danilo, et al. (2018). Synthesis of Copper Oxides Nanostructures by an Overstressed Nanosecond Discharge in Atmospheric Pressure Air between Copper Electrodes. American Journal of Mechanical and Materials Engineering, 2(1), 8-14. https://doi.org/10.11648/j.ajmme.20180201.12
ACS Style
Alexander K. Shuaibov; Alexander Y. Minya; Antonina A. Malinina; Alexander N. Malinin; Vladislav V. Danilo, et al. Synthesis of Copper Oxides Nanostructures by an Overstressed Nanosecond Discharge in Atmospheric Pressure Air between Copper Electrodes. Am. J. Mech. Mater. Eng. 2018, 2(1), 8-14. doi: 10.11648/j.ajmme.20180201.12
AMA Style
Alexander K. Shuaibov, Alexander Y. Minya, Antonina A. Malinina, Alexander N. Malinin, Vladislav V. Danilo, et al. Synthesis of Copper Oxides Nanostructures by an Overstressed Nanosecond Discharge in Atmospheric Pressure Air between Copper Electrodes. Am J Mech Mater Eng. 2018;2(1):8-14. doi: 10.11648/j.ajmme.20180201.12
@article{10.11648/j.ajmme.20180201.12, author = {Alexander K. Shuaibov and Alexander Y. Minya and Antonina A. Malinina and Alexander N. Malinin and Vladislav V. Danilo and Mihail Yu. Sichka and Igor V. Shevera}, title = {Synthesis of Copper Oxides Nanostructures by an Overstressed Nanosecond Discharge in Atmospheric Pressure Air between Copper Electrodes}, journal = {American Journal of Mechanical and Materials Engineering}, volume = {2}, number = {1}, pages = {8-14}, doi = {10.11648/j.ajmme.20180201.12}, url = {https://doi.org/10.11648/j.ajmme.20180201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmme.20180201.12}, abstract = {The results of study of the characteristics and parameters of plasma of a high-current nanosecond discharge in atmospheric pressure air between copper electrodes under conditions of strong overstress of the discharge gap are presented. Under such conditions, favorable conditions are created for igniting an atmospheric pressure diffuse discharge in an inhomogeneous electric field. The spatial, electrical and optical characteristics of the discharge, as well as the parameters of the air plasma with small additions of copper vapor are studied. It is shown that this type of discharge can be used for the synthesis of copper oxides nanostructures.}, year = {2018} }
TY - JOUR T1 - Synthesis of Copper Oxides Nanostructures by an Overstressed Nanosecond Discharge in Atmospheric Pressure Air between Copper Electrodes AU - Alexander K. Shuaibov AU - Alexander Y. Minya AU - Antonina A. Malinina AU - Alexander N. Malinin AU - Vladislav V. Danilo AU - Mihail Yu. Sichka AU - Igor V. Shevera Y1 - 2018/05/07 PY - 2018 N1 - https://doi.org/10.11648/j.ajmme.20180201.12 DO - 10.11648/j.ajmme.20180201.12 T2 - American Journal of Mechanical and Materials Engineering JF - American Journal of Mechanical and Materials Engineering JO - American Journal of Mechanical and Materials Engineering SP - 8 EP - 14 PB - Science Publishing Group SN - 2639-9652 UR - https://doi.org/10.11648/j.ajmme.20180201.12 AB - The results of study of the characteristics and parameters of plasma of a high-current nanosecond discharge in atmospheric pressure air between copper electrodes under conditions of strong overstress of the discharge gap are presented. Under such conditions, favorable conditions are created for igniting an atmospheric pressure diffuse discharge in an inhomogeneous electric field. The spatial, electrical and optical characteristics of the discharge, as well as the parameters of the air plasma with small additions of copper vapor are studied. It is shown that this type of discharge can be used for the synthesis of copper oxides nanostructures. VL - 2 IS - 1 ER -