The objective of this work is to estimate the future energy needs of the agricultural sector in two key areas: fuel consumption and the specific use of electricity for operating agricultural machinery. Meeting these energy needs could significantly enhance agricultural production by improving the availability, accessibility, and utilization of food products. Ultimately, this would contribute to ensuring food security in Niger by 2035. The Model for the Analysis of Energy Demand (MAED) is used for the simulation. Four scenarios have been defined for this study: the reference scenario, the ambitious scenario, the modest scenario, and the target scenario. The results of the target scenario are as follows: 30.96 MWyr for total energy demand, 26.54 MWyr for fuel energy demand and 4.42 MWyr for electrical energy demand. The ambitious scenario presents a total energy demand of 26.92 MWyr, including 23.07 MWyr for fuel energy demand and 3.84 MWyr for electricity energy demand in 2035. The reference scenario records a total energy demand of 23.37 MWyr, including 19.97 MWyr for fuel energy demand and 3.51 MWyr for electricity energy demand in 2035. The modest scenario presents a total energy demand of 17.85 MWyr, including 15.97 MWyr for fuel energy demand and 1.88 MWyr for electricity energy demand in 2035. With the results of the target scenario set, the study's objective will be achieved by 2035, provided that efforts are made on the massive use of agricultural machinery, on increasing production under irrigation, on reversing the current process of soil degradation, and on developing irrigated cereals (corn, rice, wheat).
Published in | American Journal of Energy Engineering (Volume 13, Issue 1) |
DOI | 10.11648/j.ajee.20251301.13 |
Page(s) | 23-31 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Energy Planning, Energy Intensity, Agricultural Machinery, Food Security, MAED Software
Type of machine | Quantity | Fuel type | Fuel consumed (L/H) | Hours worked/year | Fuel consumption (L) |
---|---|---|---|---|---|
10 hp tiller | 211 | Diesel | 1,75 | 720 | 265860 |
Water pumps | 6600 | Petrol | 1 | 340 | 2244000 |
Water pumps | 5000 | LPG | 1 | 340 | 1700000 |
Large MP high flow 900m3/ha | 7 | Diesel | 1,1 | 500 | 3850 |
Submersible pump | 88 | Diesel | 1,1 | 340 | 32912 |
70hp tractors | 1120 | Diesel | 7 | 500 | 3920000 |
Object | Unity | 2021 |
---|---|---|
Population * | Million | 23.59 |
Population growth rate * | % | - |
Urban Population | % | 16.80 |
Person/ urban Household | cap | 7 |
Number of urban Households | Million | 0.57 |
Rural Population | % | 83.20 |
Person/ rural Household | cap | 7.40 |
Number of rural Households | Million | 2.65 |
Potential Labour Force | % | 48.67 |
Participating Labour Force | % | 73.86 |
Active Labour Force | Million | 8.48 |
Population in cities with public transport | % | 20 |
Population inside Large Cities | Million | 4.72 |
Object | Unity | 2021 |
---|---|---|
GDP | US$ Billion | 13.85 |
GDP growth rate | % p.a. | - |
per capita GDP | US$/Cap | 587.23 |
Distribution by sector of GDP | ||
Agriculture | % | 36.57 |
Construction | % | 5 |
Mining | % | 8 |
Manufacturing | % | 8.4 |
Service | % | 40.3 |
Energy | % | 1.73 |
Total | % | 100 |
Scenarios | Assumptions |
---|---|
Reference | Demographics: social indicators are expected to improve slowly. The population growth rate will rise from 3.9% in 2021 to 4% in 2035. Economy: The poverty rate is not expected to change significantly. Niger's human capital is not expected to reach the minimum thresholds required for rapid economic growth. The rural sector should continue to dominate the economy, particularly the agricultural sector. GDP growth is expected to average around 6%. The rate of growth of added value in the agricultural sector is estimated at 4.75%. The continuation of current public policies would lead to a dead end and would not enable the prosperity that the people of Niger want to be achieved . [26-28] |
Ambitious | Demographics: Significant fall in the population growth rate from 3.7% in 2025 to 3.2% in 2035. Economy: Modernising the rural areas through the use of modern agricultural techniques, access to water, energy, infrastructure and the value chain would increase GDP growth in the rural sector by around 6% per year over the period. This increase in farm incomes, supported by pro-poor incentives and food security, would promote rapid economic development. By 2035, the quality of life in rural areas will have improved significantly, and the national production deficits that will have been absorbed, coupled with strategies for access to food, will make it possible to feed everyone, including urban areas whose population continues to grow. By 2035, thanks to better education, adequate food, access to water and sanitation and quality health services, Niger will finally see a steady decline in malnutrition rates and stunted growth in rural areas. The GDP growth rate will rise from 7% in 2025 to 7.5% in 2035. Growth in the agricultural sector will average around 6% . [27, 29] |
Modest | Demographics: Same as in the reference scenario. Economy: Political and institutional instability, a poor winter campaign and persistent insecurity are hurting people's living conditions. The economic growth rate will fall from 4.2% in 2025 to 3.3% in 2035. Growth in the agricultural sector will average around 3%. Risk: food crisis, drought . [27] |
Set Objective | Demographics: Same as the high scenario. The economy: The GDP growth rate is set at 9.5% in 2025, 10% in 2030 and 2035. This trend should be driven mainly by the agricultural and livestock sectors. The agricultural sector should benefit from the effects of the completion of major projects and programmes (MCC, Kandadji dam, regional poles, etc.). As for the livestock sector, it should be linked to good rainfall, which will have an impact on the availability of fodder, and to the measures taken to improve animal health. Economic growth is also being driven by the 2021-2025 Action Plan of the 3N Initiative, the cost of which is estimated/assessed at 2,693.942 billion CFA francs (US$4.46 billion). The 3N Initiative aims to increase the level of rainfed and irrigated crop production by improving the supply of inputs and equipment to increase cereal production from 5,596,575 tonnes in 2020 to 7,142,805 tonnes in 2025 and irrigated production from 1,032,000 tonnes of cereal equivalent in 2020 to 3,100,000 tonnes of cereal equivalent in 2025. The agricultural sector's growth rate will rise from 5.9% in 2025 to 7.5% in 2035, the target date for achieving food security . [3, 8, 30] |
3N | Nigeriens Feeding Nigeriens |
AGR | Agriculture |
AHA | Hydro-agricultural Developments |
CF1 | Conversion Factor |
CFA | African Financial Community |
Hp | Horsepower |
H | Hour |
EI | Energy Intensity |
ELS | Specific Electricity Uses |
GPL | Liquefied Petroleum Gas |
MWyr | Gigawatt-year |
Ha | Hectare |
Ktoe | Kilotonne of Oil Equivalent |
KWh | Kilowatt Hour |
L | Liter |
MAED | Model for Analysis of Energy Demand |
MCC | Millénium Challenge Corporation |
MF | Motive Force |
MP | Motor Pump |
NSAGR | Number of Sub-sectors of the Agriculture Sector |
ONAHA | National Office of Hydro-Agricultural Developments |
GDP | Gross Domestic Product |
[1] | Y. Hamadou Daouda, «Les politiques publiques agricoles au Niger face aux défis alimentaires et environnementaux : entre échecs répétitifs et nouvelles espérances», Cah. D’Outre-Mer Rev. Géographie Bordx., vol. 68, no 270, Art. no 270, avr. 2015, |
[2] | R. Diagne, «Sécurité alimentaire et libéralisation agricole», phdthesis, Université Nice Sophia Antipolis, 2013. Consulté le: 30 décembre 2024. [En ligne]. Disponible sur: |
[3] | «Publications économiques – Institut National de la Statistique du Niger ». Consulté le: 10 février 2025. [En ligne]. Disponible sur: |
[4] | «Système d’Information Energétique du Niger». Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[5] | «Niger : une situation alimentaire et nutritionnelle toujours inquiétante, selon OCHA | ONU Info». Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[6] | «World Bank Open Data», World Bank Open Data. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[7] | «Download the Global Hunger Index», Global Hunger Index (GHI) - peer-reviewed annual publication designed to comprehensively measure and track hunger at the global, regional, and country levels. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[8] | «Initiative 3N | Documentation». Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[9] | ONAHA, «Guide de sécurisation foncière sur les aménagements hydro-agricoles au Niger». Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[10] | K. Pawlak et M. Kołodziejczak, «The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production», Sustainability, vol. 12, no 13, p. 5488, juill. 2020, |
[11] | A. Baer-Nawrocka et A. Sadowski, «Food security and food self-sufficiency around the world: A typology of countries», PLOS ONE, vol. 14, no 3, p. e0213448, mars 2019, |
[12] | S. M. U. of T. Cottbus-Senftenberg, Brandenburg, G. E. U. of T. Cottbus-Senftenberg, Brandenburg, et Germany, «The Challenges of Food Security in Nigeria», Open Access Libr. J., vol. 04, no 12, Art. no 12, 2017, |
[13] | WATHI, «Agriculture et conditions de vie des ménages au Niger, INS-NIGER», WATHI. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[14] | L. Farajian, R. Moghaddasi, et S. Hosseini, «Agricultural energy demand modeling in Iran: Approaching to a more sustainable situation», Energy Rep., vol. 4, p. 260‑265, nov. 2018, |
[15] | E. R. Widjaya, U. Budiharti, et A. Prabowo, «An energy needs analysis for agricultural sector in Indonesia», IOP Conf. Ser. Earth Environ. Sci., vol. 686, no 1, p. 012007, mars 2021, |
[16] | A. Latsch, T. Anken, et F. Hasselmann, «L’agriculture suisse toujours plus gourmande en énergie», p. 244‑247, mai 2013. |
[17] | K. Zaman, M. M. Khan, M. Ahmad, et R. Rustam, « The relationship between agricultural technology and energy demand in Pakistan », Energy Policy, vol. 44, p. 268‑279, mai 2012, |
[18] | H. A. Bekhet et A. Abdullah, «Energy Use in Agriculture Sector: Input-Output Analysis», Int. Bus. Res., vol. 3, no 3, p. 111, juin 2010, |
[19] |
S. Khosruzzaman, M. A. Asgar, N. Karim, et S. Akbar, «Energy intensity and productivity in relation to agriculture-Bangladesh perspective», 2010, Consulté le: 7 avril 2024. [En ligne]. Disponible sur:
https://www.thaiscience.info/Journals/Article/IJAT/10842572.pdf |
[20] | N. I. Boltianska, I. Y. Manita, et A. S. Komar, «Justification of the energy saving mechanism in the agricultural sector», 2021. |
[21] | S. Wu et S. Ding, «Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector», Energy Econ., vol. 99, p. 105313, juill. 2021, |
[22] | N. Pelletier et al., « Energy Intensity of Agriculture and Food Systems », Annu. Rev. Environ. Resour., vol. 36, no 1, p. 223‑246, nov. 2011, |
[23] | D. Zhuang, J. Abbas, K. Al-Sulaiti, M. Fahlevi, M. M. Aljuaid, et S. Saniuk, «Land-use and food security in energy transition: Role of food supply», Front. Sustain. Food Syst., 2022, Consulté le: 30 décembre 2024. [En ligne]. Disponible sur: |
[24] |
«L’agriculture, moteur du développement au Niger», UNOPS. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur:
https://www.unops.org/fr/news-and-stories/stories/better-prospects-for-nigers-farmers |
[25] |
A. I. D. L. Atomique, «Modèle pour l’Analyse de la Demande d’Énergie (MAED-2)», International Atomic Energy Agency, Text, 2007.
https://doi.org/10/modele-pour-lanalyse-de-la-demande-denergie-maed-2 |
[26] | «Institut National de la Statistique du Niger». Consulté le: 10 février 2025. [En ligne]. Disponible sur: |
[27] | «SDDCI 2035», Ministère du Plan. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[28] | «IMF Data», IMF. Consulté le: 1 janvier 2025. [En ligne]. Disponible sur: |
[29] | «PDES 2022-2026», Ministère du Plan. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: |
[30] |
«Lois de finances - Projet de loi de finances 2023 - Tome 1 (VF) - Ministère des Finances du NIGER». Consulté le: 28 janvier 2024. [En ligne]. Disponible sur:
http://www.finances.gouv.ne/index.php/lois-de-finances/file/961-plf-2023-tome-1-vf-septembre-2022 |
APA Style
Mohamed, A. A. Y., Abdourahimoun, D., Halarou, H. A., Boukar, M. (2025). Energy Demand Forecasting to Assure Food Security from Agricultural Sector of Niger. American Journal of Energy Engineering, 13(1), 23-31. https://doi.org/10.11648/j.ajee.20251301.13
ACS Style
Mohamed, A. A. Y.; Abdourahimoun, D.; Halarou, H. A.; Boukar, M. Energy Demand Forecasting to Assure Food Security from Agricultural Sector of Niger. Am. J. Energy Eng. 2025, 13(1), 23-31. doi: 10.11648/j.ajee.20251301.13
@article{10.11648/j.ajee.20251301.13, author = {Aboubakar Amadou Yansambou Mohamed and Daouda Abdourahimoun and Hamza Abarchi Halarou and Makinta Boukar}, title = {Energy Demand Forecasting to Assure Food Security from Agricultural Sector of Niger }, journal = {American Journal of Energy Engineering}, volume = {13}, number = {1}, pages = {23-31}, doi = {10.11648/j.ajee.20251301.13}, url = {https://doi.org/10.11648/j.ajee.20251301.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajee.20251301.13}, abstract = {The objective of this work is to estimate the future energy needs of the agricultural sector in two key areas: fuel consumption and the specific use of electricity for operating agricultural machinery. Meeting these energy needs could significantly enhance agricultural production by improving the availability, accessibility, and utilization of food products. Ultimately, this would contribute to ensuring food security in Niger by 2035. The Model for the Analysis of Energy Demand (MAED) is used for the simulation. Four scenarios have been defined for this study: the reference scenario, the ambitious scenario, the modest scenario, and the target scenario. The results of the target scenario are as follows: 30.96 MWyr for total energy demand, 26.54 MWyr for fuel energy demand and 4.42 MWyr for electrical energy demand. The ambitious scenario presents a total energy demand of 26.92 MWyr, including 23.07 MWyr for fuel energy demand and 3.84 MWyr for electricity energy demand in 2035. The reference scenario records a total energy demand of 23.37 MWyr, including 19.97 MWyr for fuel energy demand and 3.51 MWyr for electricity energy demand in 2035. The modest scenario presents a total energy demand of 17.85 MWyr, including 15.97 MWyr for fuel energy demand and 1.88 MWyr for electricity energy demand in 2035. With the results of the target scenario set, the study's objective will be achieved by 2035, provided that efforts are made on the massive use of agricultural machinery, on increasing production under irrigation, on reversing the current process of soil degradation, and on developing irrigated cereals (corn, rice, wheat). }, year = {2025} }
TY - JOUR T1 - Energy Demand Forecasting to Assure Food Security from Agricultural Sector of Niger AU - Aboubakar Amadou Yansambou Mohamed AU - Daouda Abdourahimoun AU - Hamza Abarchi Halarou AU - Makinta Boukar Y1 - 2025/03/13 PY - 2025 N1 - https://doi.org/10.11648/j.ajee.20251301.13 DO - 10.11648/j.ajee.20251301.13 T2 - American Journal of Energy Engineering JF - American Journal of Energy Engineering JO - American Journal of Energy Engineering SP - 23 EP - 31 PB - Science Publishing Group SN - 2329-163X UR - https://doi.org/10.11648/j.ajee.20251301.13 AB - The objective of this work is to estimate the future energy needs of the agricultural sector in two key areas: fuel consumption and the specific use of electricity for operating agricultural machinery. Meeting these energy needs could significantly enhance agricultural production by improving the availability, accessibility, and utilization of food products. Ultimately, this would contribute to ensuring food security in Niger by 2035. The Model for the Analysis of Energy Demand (MAED) is used for the simulation. Four scenarios have been defined for this study: the reference scenario, the ambitious scenario, the modest scenario, and the target scenario. The results of the target scenario are as follows: 30.96 MWyr for total energy demand, 26.54 MWyr for fuel energy demand and 4.42 MWyr for electrical energy demand. The ambitious scenario presents a total energy demand of 26.92 MWyr, including 23.07 MWyr for fuel energy demand and 3.84 MWyr for electricity energy demand in 2035. The reference scenario records a total energy demand of 23.37 MWyr, including 19.97 MWyr for fuel energy demand and 3.51 MWyr for electricity energy demand in 2035. The modest scenario presents a total energy demand of 17.85 MWyr, including 15.97 MWyr for fuel energy demand and 1.88 MWyr for electricity energy demand in 2035. With the results of the target scenario set, the study's objective will be achieved by 2035, provided that efforts are made on the massive use of agricultural machinery, on increasing production under irrigation, on reversing the current process of soil degradation, and on developing irrigated cereals (corn, rice, wheat). VL - 13 IS - 1 ER -