| Peer-Reviewed

Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent

Received: 6 June 2021    Accepted: 23 June 2021    Published: 13 July 2021
Views:       Downloads:
Abstract

Entomopathogenic fungi are an important insect biological control group, however most of the fungi described as biological controllers have a broad spectrum of insect hosts. Pseudips mexicanus is a bark beetle that infests pine-oak forests in Mexico, causing significant economic and ecologic losses. In addition, the infestation alters the ecology of different organisms that coexist in the forest habitat. The search for bark beetle control methods other than pesticides has led to research into biological control procedures based on naturally occurring beetle pathogens. The goal of this paper was the isolation, morphological and molecular identification of fungi that naturally parasitize the bark beetle Pseudips mexicanus, as well as to carry out infection tests to propose a specific biological control alternative to this plague. Associated to this beetle, we have identified four isolates belonging to three genus: Beauveria, Lecanicillium and Trichoderma, within these some species have been used previously as biocontrollers, mainly in agricultural use, in the process of transformation of organic crops. The LVP-2 isolated, which was identified as Beauveria was tested for infection of naturally harvested bark beetles and its pathogenicity was proved, at three days post infection (dpi) most of the individuals presented little mobility of the legs and a swelling of the body was noted, however more studies are needed to determine their viability as plague controllers in Mexican forests.

Published in American Journal of Agriculture and Forestry (Volume 9, Issue 4)
DOI 10.11648/j.ajaf.20210904.16
Page(s) 201-210
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bark Beetle, Forest, Pine Trees, Pest Management, Biological Control

References
[1] Atkinson, T. H. (2012) State of knowledge of the taxonomy of the bark and ambrosial beetles of Mexico (Coleoptera: Curculionidae: Scolytinae). Memory of the XVI National Symposium on Forest Parasitology. 1: 13-27.
[2] Wood, S. L. (1982). The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6: 1-1356.
[3] Cibrián, T. J., and Cibrián, T. D. (1998). Las plagas y enfermedades de los bosques de México. Ciclo Conf. El Sect. For. México Av. Perspect. Mem. México, D. F. 19–23.
[4] Camacho-Pantoja A. (2012) El género Ips (Coleóptera: Curculionidae: Scolytinae) en México. Tesis doctoral. Colegio de Postgraduados, Chapingo. 1-73.
[5] Goheen, D. J., and Hansen, E. M. (1993). Effects of pathogens and bark beetles on forests. 175.
[6] Hernández Paz, M. (1975). El Gorgojo de la Corteza, Plaga Principal de los Pinares; Dendroctonus frontalis Zimm (Coleooptera: scolytidae). Publ. 1 P1, 1–3.
[7] Harmon, M. E., Swanson, F. J., H., Franklin, J. M., Gregory S. V., Lattin, J. D., Anderson S. P., and Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems.
[8] Carpenter SE, Harmon ME, Ingham ER, Kelsey RG, Lattin JD, Schowalter TD. (1988) Early paterns of heterotroph activity in conifer logs. Proc R Soc Edinb Sect B Biol Sci 94, 33–43.
[9] Edmonds, R. L., and Eglitis, A. (1989). The role of the Douglas-fir beetle and wood borers in the decomposition of and nutrient release from Douglas-fir logs. Can. J. For. Res. 19, 853–859.
[10] Zhong, H., and Schowalter, T. D. (1989). Conifer bole utilization by wood-boring beetles in western Oregon. Can. J. For. Res. 19, 943–947.
[11] Schowalter, T. D., and Filip, G. M. (1993). Bark beetle-pathogen-conifer interactions: an overview. Beetle-Pathog. Interact. Conifer For. Ed. TD Schowalter GM Filip Acad. Press Inc San Diego CA 4.
[12] Wong, C. M. and Daniels, L. D. (2016) Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob Chang Biol. doi: 10.1111/gcb.13554.
[13] Atkinson, T. H., Saucedo, C. E., Martínez, E., and Burgos, A. (1986). Coleópteros Scolytidae y Platypodidae asociados con las comunidades vegetales de clima templado y frío en el estado de Morelos, México. Acta Zool. Mex. Ns 17, 1–58.
[14] Birch, M. C., Haynes, K. F., and others (1982). Insect pheromones. Studies in Biology No. 147. Edward Arnold Ltd., 60p.
[15] Llanderal, C. C. (2000). Introducción a la fisiología de insectos. Colegio de Post-Graduados, Chapingo, México. 1-29.
[16] Butt, T. M., Jackson, C., and Magan, N. (2001) Introduction-fungal biological control agents: Progress, problems and potential, in Fungal Biocontrol Agents: Progress, Problems and Potential, edited by TM Butt, C. Jackson N Morgan CAB Int. Wallingford UK 1–8.
[17] Fonseca A. G. (2008). Distribución Espacial de Pseudohylesinus variegatus y Pityophthorus elatinus asociados Abies religiosa, en el Parque Nacional Lagunas de Zempoala.
[18] Hajek, A. E., and Bauer, L. S. (2009). Use of entomopathogens against invasive wood boring beetles in North America. In Use of Microbes for Control and Eradication of Invasive Arthropods, (Springer), pp. 159–179.
[19] Spadaro, D., and Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 91, 185–194.
[20] Summy, K. R., and French, J. V. (1988). Biological control of agricultural pests: concepts every producer should understand. J. Rio Gd. Val. Hortic. Soc. USA.
[21] Anna Litwin, Monika Nowak, Sylwia Różalska. 2020. Entomopathogenic fungi: unconventional applications. Rev. Environ Sci. Biotechnol. 19: 23-42.
[22] Spiridom Mantzoukas and Panagiotis A. Eliopoulos. (2020). Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 10, 360.
[23] INEGI, 2016. www.inegi.org.mx/inegi/conacyt/doc/proyectos/uam.zip#UAM/TERCERA20ETAPA/Informe%20de%20la%20Tercera%20Etapa%20del%20Proyecto%20187311.pdf
[24] Barnett, H. L., and Hunter, B. B. (1972). Illustrated genera of imperfect fungi (JSTOR).
[25] Webster J. 1986. Introduction to Fungi. 2o ed. Cambridge University Press.
[26] Domsch, K. H., W. Gams and T. Anderson. 1993. Compendium of soil fungi. IHV-Verlag, 859 pp.
[27] Domsch, K. H., Gams, W., and Anderson, T. (1980). Compedium of soil fungi. Vol. I (Academic Press, London).
[28] White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–321. In: PCR protocoh: A guide to methods and applications. Eds., M. A. Innis, D. H. Gelfand. J. J. Sninsky, and T. J. White. Academic Press, New York.
[29] Sambrook, J., and Russel, D. W. (2001). Molecular Cloning: a laboratory manual, Cold Spring Harbour Laboratory Press (Cold Spring Harbour).
[30] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.
[31] Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., and Gascuel, O. (2008). Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469.
[32] Dereeper, A., Audic, S., Claverie, J.-M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8.
[33] Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224.
[34] Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685–695.
[35] Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
[36] Chevenet, F., Brun, C., Bañuls, A.-L., Jacq, B., and Christen, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439.
[37] Paul, N. C., Lee, H. B., Lee, J. H., Shin, K. S., Ryu, T. H., Kwon, H. R., Kim, Y. K., Youn, Y. N., and Yu, S. H. (2014). Endophytic Fungi from Lycium chinense mill and characterization of two new Korean records of Colletotrichum. Int. J. Mol. Sci. 15, 15272–15286.
[38] Sun, S., Zeng, X., Zhang, D., and Guo, S. (2015). Diverse fungi associated with partial irregular heartwood of Dalbergia odorifera. Sci. Rep. 5.
[39] Spicer, G. S., and Bell, C. D. (2002). Molecular Phylogeny of the Drosophila virilis Species Group (Diptera: Drosophilidae) Inferred from Mitochondrial 12S and 16S Ribosomal RNA Genes. Ann. Entomol. Soc. Am. 95, 156–161.
[40] Marcheggiani, S., Iaconelli, M., D’angelo, A., Pierdominici, E., La Rosa, G., Muscillo, M., Equestre, M., and Mancini, L. (2008). Microbiological and 16S rRNA analysis of sulphite- reducing clostridia from river sediments in central Italy. BMC Microbiol. 8, 171.
[41] Ernst, M., Neubert, K., Mendgen, K. W., and Wirsel, S. G. R. (2011). Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed. BMC Microbiol. 11, 242.
[42] Rimington, W. R., Pressel, S., Duckett, J. G., and Bidartondo, M. I. (2015). Fungal associations of basal vascular plants: reopening a closed book? New Phytol. 205, 1394–1398.
[43] Yang, X., Cheng, Y.-F., Deng, C., Ma, Y., Wang, Z.-W., Chen, X.-H., and Xue, L.-B. (2014). Comparative transcriptome analysis of eggplant (Solanum melongena L.) and turkey berry (Solanum torvum Sw.): phylogenomics and disease resistance analysis. BMC 488 Genomics 15, 412.
[44] Fuentes, C. C., Blanco, C. J. L. 2007. Los postulados de koch revisión y perspectiva actual. Revista complutense de ciencias veterinarias. Vol. 1 (2). pág. 262-266.
[45] Rehner, S. A., Minnis, A. M., Sung, G. H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103 (5), 1055-1073.
[46] Pečiulytė, D., and Kačergius, A. (2012). Lecanicillium aphanocladii–a new species to the mycoflora of Lithuania and a new pathogen of tree leaves mining insects. Botanica Lithuanica, 18 (2), 133-146.
[47] Zare, R., and Gams, W. (2004). A monograph of Verticillium section Prostrata (Plant Pests and Diseases Research Institute).
[48] Comisión Nacional Forestal Coordinación General de Conservación y Restauración 364 Gerencia de Sanidad Forestal (2010). Manual de Sanidad Forestal.
[49] Hajek, A. E., Bauer, L. S., and Har (2007). Microbial control of wood-boring insects attacking forest and shade trees. In Field Manual of Techniques in Invertebrate Pathology, (Springer), pp. 505–525.
[50] Vega, F. E.; Posada, F.; Aime, M. C.; Pava-Ripoll, M.; Infante, F.; Rehner, S. A. Entomopathogenic fungal endophytes. Biol. Control 2008, 46, 72–82.
[51] Powell, W. A.; Klingeman, W. E.; Ownley, B. H.; Gwinn, K. D. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci. 2009, 44, 391–396.
[52] González-Mas, N.; Cuenca-Medina, M.; Gutiérrez-Sánchez, F.; Quesada-Moraga, E. Bottom-up e_ects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J. Pest. Sci. 2019, 92, 1271–1281.
[53] Bing, L. A.; Lewis, L. C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 1991, 20, 1207–1211.
[54] Meyling, N. V., and Eilenberg, J. (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol. Control 43, 145–155.
[55] Steinwender, B. M., Krenn, H. W., and Wegensteiner, R. (2010). Different effects of the insectpathogenic fungus Beauveria bassiana (Deuteromycota) on the bark beetle Ips sexdentatus (Coleoptera: Curculionidae) and on its predator Thanasimus formicarius (Coleoptera: Cleridae). J. Plant Dis. Prot. 117, 33–38.
[56] Vaupel, O., and Zimmermann, G. (1996). Orientierende Versuche zur Kombination von Pheromonfallen mit dem insektenpathogenen Pilz Beauveria bassiana (Bals.) Vuill. Gegen die Borkenkäferartlps typographus L. (Col., Scolytidae). Anz. Für Schädlingskunde Pflanzenschutz Umweltschutz 69, 175–179.
[57] Kreutz, J., Zimmermann, G., Marohn, H., Vaupel, O., Mosbacher, G., and others (2000). Preliminary investigations on the use of Beauveria bassiana (Bals.) Vuill. and other control methods against the bark beetle Ips typographus (Col., Scolytidae) in the field. Mitteilungen Dtsch. Ges. Für Allg. Angew. Entomol. 12, 119–125.
[58] Kirisits, T. (2010). Fungi isolated from Picea abies infested by the bark beetle Ips typographus in the Bia\lowieza forest in north-eastern Poland. For. Pathol. 40, 100–110.
[59] Mudronceková, S., Mazán, M., Nemcovic, M., and Salamon, I. (2013). Entomopathogenic fungus species Beauveria bassiana (bals.) and Metarhizium anisopliae (metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.). J. Microbiol. Biotechnol. Food Sci. 2, 2469.
[60] Vu, V. H., Hong, S. I., and Kim, K. (2008). Production of aerial conidia of Lecanicillium lecanii 41185 by solid-state fermentation for use as a mycoinsecticide. Mycobiology 36, 183–189.
[61] Sundaravadivelan, C., and Padmanabhan, M. N. (2014). Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti. L. Environ. Sci. Pollut. Res. 21, 4624–4633.
[62] Mona Khaleil, El-Mougith, Abdou, Hashem, Halim and Lokma Noha (2016). Biocontrol Potential of Entomopathogenic Fungus, Trichoderma hamatum against the Cotton Aphid, Aphis gossypii. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402, p-ISSN: 2319-2399. Volume 10, Issue 5 Ver. II (May. 2016), PP 11-2.
[63] Brotman, Y., Gupta Kapuganti J., Viterbo A. (2010) Trichoderma. Current Biology, Volume 20, Issue 9, 11 May, Pages R390-R391.
[64] Salas-Marina M. A., Silva-Flores M. A., Uresti-Rivera E. E, Castro-Longoria E, Herrera- Estrella A and Sergio Casas-Flores. (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European journal of plant pathology 131 (1): 15-26.
[65] Luz, C., Mnyone, L. L., Sangusangu, R., Lyimo, I. N., Rocha, L. F., Humber, R. A., and Russell, T. L. (2010). A new resting trap to sample fungus-infected mosquitoes, and the pathogenicity of Lecanicillium muscarium to culicid adults. Acta Trop. 116, 105–107.
Cite This Article
  • APA Style

    Isaac Tello-Salgado, Oscar Burgos-Duenas, Maria Del Rayo Sanchez-Carbente, Armando Burgos-Solorio. (2021). Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent. American Journal of Agriculture and Forestry, 9(4), 201-210. https://doi.org/10.11648/j.ajaf.20210904.16

    Copy | Download

    ACS Style

    Isaac Tello-Salgado; Oscar Burgos-Duenas; Maria Del Rayo Sanchez-Carbente; Armando Burgos-Solorio. Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent. Am. J. Agric. For. 2021, 9(4), 201-210. doi: 10.11648/j.ajaf.20210904.16

    Copy | Download

    AMA Style

    Isaac Tello-Salgado, Oscar Burgos-Duenas, Maria Del Rayo Sanchez-Carbente, Armando Burgos-Solorio. Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent. Am J Agric For. 2021;9(4):201-210. doi: 10.11648/j.ajaf.20210904.16

    Copy | Download

  • @article{10.11648/j.ajaf.20210904.16,
      author = {Isaac Tello-Salgado and Oscar Burgos-Duenas and Maria Del Rayo Sanchez-Carbente and Armando Burgos-Solorio},
      title = {Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent},
      journal = {American Journal of Agriculture and Forestry},
      volume = {9},
      number = {4},
      pages = {201-210},
      doi = {10.11648/j.ajaf.20210904.16},
      url = {https://doi.org/10.11648/j.ajaf.20210904.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20210904.16},
      abstract = {Entomopathogenic fungi are an important insect biological control group, however most of the fungi described as biological controllers have a broad spectrum of insect hosts. Pseudips mexicanus is a bark beetle that infests pine-oak forests in Mexico, causing significant economic and ecologic losses. In addition, the infestation alters the ecology of different organisms that coexist in the forest habitat. The search for bark beetle control methods other than pesticides has led to research into biological control procedures based on naturally occurring beetle pathogens. The goal of this paper was the isolation, morphological and molecular identification of fungi that naturally parasitize the bark beetle Pseudips mexicanus, as well as to carry out infection tests to propose a specific biological control alternative to this plague. Associated to this beetle, we have identified four isolates belonging to three genus: Beauveria, Lecanicillium and Trichoderma, within these some species have been used previously as biocontrollers, mainly in agricultural use, in the process of transformation of organic crops. The LVP-2 isolated, which was identified as Beauveria was tested for infection of naturally harvested bark beetles and its pathogenicity was proved, at three days post infection (dpi) most of the individuals presented little mobility of the legs and a swelling of the body was noted, however more studies are needed to determine their viability as plague controllers in Mexican forests.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Identification of Fungi Associated to Pseudips mexicanus (Curculionidae: Scolytinae) as a Possible Biocontrol Agent
    AU  - Isaac Tello-Salgado
    AU  - Oscar Burgos-Duenas
    AU  - Maria Del Rayo Sanchez-Carbente
    AU  - Armando Burgos-Solorio
    Y1  - 2021/07/13
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ajaf.20210904.16
    DO  - 10.11648/j.ajaf.20210904.16
    T2  - American Journal of Agriculture and Forestry
    JF  - American Journal of Agriculture and Forestry
    JO  - American Journal of Agriculture and Forestry
    SP  - 201
    EP  - 210
    PB  - Science Publishing Group
    SN  - 2330-8591
    UR  - https://doi.org/10.11648/j.ajaf.20210904.16
    AB  - Entomopathogenic fungi are an important insect biological control group, however most of the fungi described as biological controllers have a broad spectrum of insect hosts. Pseudips mexicanus is a bark beetle that infests pine-oak forests in Mexico, causing significant economic and ecologic losses. In addition, the infestation alters the ecology of different organisms that coexist in the forest habitat. The search for bark beetle control methods other than pesticides has led to research into biological control procedures based on naturally occurring beetle pathogens. The goal of this paper was the isolation, morphological and molecular identification of fungi that naturally parasitize the bark beetle Pseudips mexicanus, as well as to carry out infection tests to propose a specific biological control alternative to this plague. Associated to this beetle, we have identified four isolates belonging to three genus: Beauveria, Lecanicillium and Trichoderma, within these some species have been used previously as biocontrollers, mainly in agricultural use, in the process of transformation of organic crops. The LVP-2 isolated, which was identified as Beauveria was tested for infection of naturally harvested bark beetles and its pathogenicity was proved, at three days post infection (dpi) most of the individuals presented little mobility of the legs and a swelling of the body was noted, however more studies are needed to determine their viability as plague controllers in Mexican forests.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Biological Research Center, Autonomous University of the State of Morelos, Cuernavaca, Mexico

  • Biological Research Center, Autonomous University of the State of Morelos, Cuernavaca, Mexico

  • Biotechnology Research Center, Autonomous University of the State of Morelos, Cuernavaca, Mexico

  • Biological Research Center, Autonomous University of the State of Morelos, Cuernavaca, Mexico

  • Sections